Deep network and multi-atlas segmentation fusion for delineation of thigh muscle groups in three-dimensional water-fat separated MRI.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2024-09-01 Epub Date: 2024-09-03 DOI:10.1117/1.JMI.11.5.054003
Nagasoujanya V Annasamudram, Azubuike M Okorie, Richard G Spencer, Rita R Kalyani, Qi Yang, Bennett A Landman, Luigi Ferrucci, Sokratis Makrogiannis
{"title":"Deep network and multi-atlas segmentation fusion for delineation of thigh muscle groups in three-dimensional water-fat separated MRI.","authors":"Nagasoujanya V Annasamudram, Azubuike M Okorie, Richard G Spencer, Rita R Kalyani, Qi Yang, Bennett A Landman, Luigi Ferrucci, Sokratis Makrogiannis","doi":"10.1117/1.JMI.11.5.054003","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Segmentation is essential for tissue quantification and characterization in studies of aging and age-related and metabolic diseases and the development of imaging biomarkers. We propose a multi-method and multi-atlas methodology for automated segmentation of functional muscle groups in three-dimensional (3D) thigh magnetic resonance images. These groups lie anatomically adjacent to each other, rendering their manual delineation a challenging and time-consuming task.</p><p><strong>Approach: </strong>We introduce a framework for automated segmentation of the four main functional muscle groups of the thigh, gracilis, hamstring, quadriceps femoris, and sartorius, using chemical shift encoded water-fat magnetic resonance imaging (CSE-MRI). We propose fusing anatomical mappings from multiple deformable models with 3D deep learning model-based segmentation. This approach leverages the generalizability of multi-atlas segmentation (MAS) and accuracy of deep networks, hence enabling accurate assessment of volume and fat content of muscle groups.</p><p><strong>Results: </strong>For segmentation performance evaluation, we calculated the Dice similarity coefficient (DSC) and Hausdorff distance 95th percentile (HD-95). We evaluated the proposed framework, its variants, and baseline methods on 15 healthy subjects by threefold cross-validation and tested on four patients. Fusion of multiple atlases, deformable registration models, and deep learning segmentation produced the top performance with an average DSC of 0.859 and HD-95 of 8.34 over all muscles.</p><p><strong>Conclusions: </strong>Fusion of multiple anatomical mappings from multiple MAS techniques enriches the template set and improves the segmentation accuracy. Additional fusion with deep network decisions applied to the subject space offers complementary information. The proposed approach can produce accurate segmentation of individual muscle groups in 3D thigh MRI scans.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"11 5","pages":"054003"},"PeriodicalIF":1.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369361/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.5.054003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Segmentation is essential for tissue quantification and characterization in studies of aging and age-related and metabolic diseases and the development of imaging biomarkers. We propose a multi-method and multi-atlas methodology for automated segmentation of functional muscle groups in three-dimensional (3D) thigh magnetic resonance images. These groups lie anatomically adjacent to each other, rendering their manual delineation a challenging and time-consuming task.

Approach: We introduce a framework for automated segmentation of the four main functional muscle groups of the thigh, gracilis, hamstring, quadriceps femoris, and sartorius, using chemical shift encoded water-fat magnetic resonance imaging (CSE-MRI). We propose fusing anatomical mappings from multiple deformable models with 3D deep learning model-based segmentation. This approach leverages the generalizability of multi-atlas segmentation (MAS) and accuracy of deep networks, hence enabling accurate assessment of volume and fat content of muscle groups.

Results: For segmentation performance evaluation, we calculated the Dice similarity coefficient (DSC) and Hausdorff distance 95th percentile (HD-95). We evaluated the proposed framework, its variants, and baseline methods on 15 healthy subjects by threefold cross-validation and tested on four patients. Fusion of multiple atlases, deformable registration models, and deep learning segmentation produced the top performance with an average DSC of 0.859 and HD-95 of 8.34 over all muscles.

Conclusions: Fusion of multiple anatomical mappings from multiple MAS techniques enriches the template set and improves the segmentation accuracy. Additional fusion with deep network decisions applied to the subject space offers complementary information. The proposed approach can produce accurate segmentation of individual muscle groups in 3D thigh MRI scans.

融合深度网络和多图谱分割技术,在三维水脂分离磁共振成像中划分大腿肌肉群。
目的:在研究衰老、年龄相关疾病和代谢性疾病以及开发成像生物标记物时,分割对于组织量化和特征描述至关重要。我们提出了一种多方法和多图谱方法,用于自动分割三维(3D)大腿磁共振图像中的功能性肌肉群。这些肌群在解剖学上彼此相邻,因此人工划分这些肌群是一项具有挑战性且耗时的任务:方法:我们采用化学位移编码水脂磁共振成像(CSE-MRI)技术,为自动分割大腿的四个主要功能肌群(腓肠肌、腘绳肌、股四头肌和滑肌)提供了一个框架。我们建议将多个可变形模型的解剖映射与基于三维深度学习模型的分割相结合。这种方法充分利用了多图谱分割(MAS)的通用性和深度网络的准确性,从而能够准确评估肌肉群的体积和脂肪含量:为了评估分割性能,我们计算了戴斯相似系数(DSC)和豪斯多夫距离第 95 百分位数(HD-95)。通过三重交叉验证,我们在 15 名健康受试者身上评估了所提出的框架、其变体和基线方法,并在 4 名患者身上进行了测试。融合多种地图集、可变形配准模型和深度学习分割法产生了最佳性能,所有肌肉的平均 DSC 为 0.859,HD-95 为 8.34:结论:融合多种 MAS 技术的多种解剖映射可丰富模板集,提高分割准确性。与应用于主体空间的深度网络决策的额外融合提供了补充信息。所提出的方法可以在三维大腿磁共振成像扫描中准确分割出单个肌肉群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信