{"title":"Genomic Assessment of Potential Probiotic <i>Lactiplantibacillus plantarum</i> CRM56-2 Isolated from Fermented Tea Leaves.","authors":"Engkarat Kingkaew, Naoto Tanaka, Yuh Shiwa, Jaruwan Sitdhipol, Rattanatda Nuhwa, Somboon Tanasupawat","doi":"10.21315/tlsr2024.35.2.12","DOIUrl":null,"url":null,"abstract":"<p><p><i>Lactiplantibacillus plantarum</i> is a widely studied species known for its probiotic properties that can help alleviate serum cholesterol levels. Whole-genome sequencing provides genetic information on probiotic attributes, metabolic activities and safety assessment. This study investigates the probiotic properties of strain CRM56-2, isolated from Thai fermented tea leaves, using Whole-Genome Sequencing (WGS) to evaluate the safety, health-promoting genes and functional analysis. Strain CRM56-2 showed bile salt hydrolase (BSH) activity, assimilated cholesterol at a rate of 75.94%, tolerated acidic and bile environments and attached to Caco-2 cells. Based on ANIb (98.9%), ANIm (99.2%), and digital DNA-DNA hybridisation (98.3%), strain CRM56-2 was identified as <i>L. plantarum</i>. <i>In silico</i> analysis revealed that it was not pathogenic and contained no antibiotic-resistance genes or plasmids. <i>L. plantarum</i> CRM56-2 possessed genes linked to several probiotic properties and beneficial impacts. The genome of strain CRM56-2 suggested that <i>L. plantarum</i> CRM56-2 is non-hazardous, with potential probiotic characteristics and beneficial impacts, which could enhance its probiotic application. Consequently, <i>L. plantarum</i> CRM56-2 demonstrated excellent cholesterol-lowering activity and probiotic properties.</p>","PeriodicalId":23477,"journal":{"name":"Tropical life sciences research","volume":"35 2","pages":"249-269"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371405/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tropical life sciences research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21315/tlsr2024.35.2.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lactiplantibacillus plantarum is a widely studied species known for its probiotic properties that can help alleviate serum cholesterol levels. Whole-genome sequencing provides genetic information on probiotic attributes, metabolic activities and safety assessment. This study investigates the probiotic properties of strain CRM56-2, isolated from Thai fermented tea leaves, using Whole-Genome Sequencing (WGS) to evaluate the safety, health-promoting genes and functional analysis. Strain CRM56-2 showed bile salt hydrolase (BSH) activity, assimilated cholesterol at a rate of 75.94%, tolerated acidic and bile environments and attached to Caco-2 cells. Based on ANIb (98.9%), ANIm (99.2%), and digital DNA-DNA hybridisation (98.3%), strain CRM56-2 was identified as L. plantarum. In silico analysis revealed that it was not pathogenic and contained no antibiotic-resistance genes or plasmids. L. plantarum CRM56-2 possessed genes linked to several probiotic properties and beneficial impacts. The genome of strain CRM56-2 suggested that L. plantarum CRM56-2 is non-hazardous, with potential probiotic characteristics and beneficial impacts, which could enhance its probiotic application. Consequently, L. plantarum CRM56-2 demonstrated excellent cholesterol-lowering activity and probiotic properties.
期刊介绍:
Tropical Life Sciences Research (TLSR) formerly known as Journal of Bioscience seeks to publish relevant ideas and knowledge addressing vital life sciences issues in the tropical region. The Journal’s scope is interdisciplinary in nature and covers any aspects related to issues on life sciences especially from the field of biochemistry, microbiology, biotechnology and animal, plant, environmental, biomedical and pharmaceutical sciences. TLSR practices double blind peer review system to ensure and maintain the good quality of articles published in this journal. Two issues are published annually in printed and electronic form. TLSR also accepts review articles, experimental papers and short communications. The Chief Editor would like to invite researchers to use this journal as a mean to rapidly promote their research findings.