Effects of ECM protein-coated surfaces on the generation of retinal pigment epithelium cells differentiated from human pluripotent stem cells.

IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Regenerative Biomaterials Pub Date : 2024-08-20 eCollection Date: 2024-01-01 DOI:10.1093/rb/rbae091
Zeyu Tian, Qian Liu, Hui-Yu Lin, Yu-Ru Zhu, Ling Ling, Tzu-Cheng Sung, Ting Wang, Wanqi Li, Min Gao, Sitian Cheng, Remya Rajan Renuka, Suresh Kumar Subbiah, Guoping Fan, Gwo-Jang Wu, Akon Higuchi
{"title":"Effects of ECM protein-coated surfaces on the generation of retinal pigment epithelium cells differentiated from human pluripotent stem cells.","authors":"Zeyu Tian, Qian Liu, Hui-Yu Lin, Yu-Ru Zhu, Ling Ling, Tzu-Cheng Sung, Ting Wang, Wanqi Li, Min Gao, Sitian Cheng, Remya Rajan Renuka, Suresh Kumar Subbiah, Guoping Fan, Gwo-Jang Wu, Akon Higuchi","doi":"10.1093/rb/rbae091","DOIUrl":null,"url":null,"abstract":"<p><p>Retinal degeneration diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), initially manifest as dysfunction or death of the retinal pigment epithelium (RPE). Subretinal transplantation of human pluripotent stem cell (hPSC)-derived RPE cells has emerged as a potential therapy for retinal degeneration. However, RPE cells differentiated from hPSCs using current protocols are xeno-containing and are rarely applied in clinical trials. The development of hPSC-derived RPE cell differentiation protocols using xeno-free biomaterials is urgently needed for clinical applications. In this study, two protocols (the activin A and NIC84 protocols) were selected for modification and use in the differentiation of hiPSCs into RPE cells; the chetomin concentration was gradually increased to achieve high differentiation efficiency of RPE cells. The xeno-free extracellular matrix (ECM) proteins, laminin-511, laminin-521 and recombinant vitronectin, were selected as plate-coating substrates, and a Matrigel (xeno-containing ECM)-coated surface was used as a positive control. Healthy, mature hPSC-derived RPE cells were transplanted into 21-day-old Royal College of Surgeons (RCS) rats, a model of retinal degeneration disease. The visual function of RCS rats was evaluated by optomotor response (qOMR) and electroretinography after transplantation of hPSC-derived RPE cells. Our study demonstrated that hPSCs can be efficiently differentiated into RPE cells on LN521-coated dishes using the NIC84 protocol, and that subretinal transplantation of the cell suspensions can delay the progression of vision loss in RCS rats.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae091"},"PeriodicalIF":5.6000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374035/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae091","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Retinal degeneration diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), initially manifest as dysfunction or death of the retinal pigment epithelium (RPE). Subretinal transplantation of human pluripotent stem cell (hPSC)-derived RPE cells has emerged as a potential therapy for retinal degeneration. However, RPE cells differentiated from hPSCs using current protocols are xeno-containing and are rarely applied in clinical trials. The development of hPSC-derived RPE cell differentiation protocols using xeno-free biomaterials is urgently needed for clinical applications. In this study, two protocols (the activin A and NIC84 protocols) were selected for modification and use in the differentiation of hiPSCs into RPE cells; the chetomin concentration was gradually increased to achieve high differentiation efficiency of RPE cells. The xeno-free extracellular matrix (ECM) proteins, laminin-511, laminin-521 and recombinant vitronectin, were selected as plate-coating substrates, and a Matrigel (xeno-containing ECM)-coated surface was used as a positive control. Healthy, mature hPSC-derived RPE cells were transplanted into 21-day-old Royal College of Surgeons (RCS) rats, a model of retinal degeneration disease. The visual function of RCS rats was evaluated by optomotor response (qOMR) and electroretinography after transplantation of hPSC-derived RPE cells. Our study demonstrated that hPSCs can be efficiently differentiated into RPE cells on LN521-coated dishes using the NIC84 protocol, and that subretinal transplantation of the cell suspensions can delay the progression of vision loss in RCS rats.

涂有 ECM 蛋白的表面对从人类多能干细胞分化出的视网膜色素上皮细胞生成的影响。
视网膜变性疾病,如老年性黄斑变性(AMD)和视网膜色素变性(RP),最初表现为视网膜色素上皮(RPE)的功能障碍或死亡。视网膜下移植人多能干细胞(hPSC)衍生的RPE细胞已成为治疗视网膜变性的一种潜在疗法。然而,采用现有方案从 hPSC 分化出的 RPE 细胞含有异种成分,很少应用于临床试验。临床应用迫切需要开发使用不含异种生物材料的 hPSC 衍生 RPE 细胞分化方案。本研究选择了两种方案(活化素 A 方案和 NIC84 方案)进行修改,并将其用于 hiPSCs 向 RPE 细胞的分化;逐渐增加 chetomin 的浓度,以实现 RPE 细胞的高分化效率。选择不含异种蛋白的细胞外基质(ECM)蛋白--层粘连蛋白-511、层粘连蛋白-521和重组玻璃连蛋白--作为平板包被基底,Matrigel(含异种蛋白的ECM)包被表面作为阳性对照。健康、成熟的 hPSC 衍生 RPE 细胞被移植到 21 天大的皇家外科学院(RCS)大鼠体内,这是一种视网膜变性疾病模型。移植 hPSC 衍生的 RPE 细胞后,通过视运动反应(qOMR)和视网膜电图评估了 RCS 大鼠的视觉功能。我们的研究表明,使用 NIC84 方案,hPSCs 可以在涂有 LN521 的培养皿上高效分化成 RPE 细胞,而且视网膜下移植细胞悬浮液可以延缓 RCS 大鼠视力丧失的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Regenerative Biomaterials
Regenerative Biomaterials Materials Science-Biomaterials
CiteScore
7.90
自引率
16.40%
发文量
92
审稿时长
10 weeks
期刊介绍: Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信