Jason Y Tang, Valentina L Kouznetsova, Santosh Kesari, Igor F Tsigelny
{"title":"Development of a Diagnostic Model for Pancreatic Ductal Adenocarcinoma Using Machine Learning and Blood-Based miRNAs.","authors":"Jason Y Tang, Valentina L Kouznetsova, Santosh Kesari, Igor F Tsigelny","doi":"10.1159/000540329","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Pancreatic ductal adenocarcinoma (PDAC) has the lowest survival rate among all major cancers due to a lack of symptoms in early stages, early detection tools, and optimal therapies for late-stage patients. Thus, effective and non-invasive diagnostic tests are greatly needed. Recently, circulating miRNAs have been reported to be altered in PDAC. They are promising biomarkers because of stability in the blood, ease of non-invasive detection, and convenient screening methods. This study aimed to use blood-based miRNA biomarkers and various analysis methods in the development of a machine-learning (ML) model for PDAC.</p><p><strong>Methods: </strong>Blood-based miRNAs associated with PDAC were collected from open sources. miRNA sequences, targeted genes, and involved pathways were used to construct a set of descriptors for an ML model.</p><p><strong>Results: </strong>Bioinformatics analysis revealed that most genes in pancreatic cancer and insulin signaling pathways were targeted by the PDAC-related miRNAs. The best-performing ML model with the Random Forest classifier was able to achieve an accuracy of 88.4%. Model evaluations of an independent PDAC-associated miRNAs test set had 100% accuracy while non-cancer miRNAs had 52.4% accuracy, indicating specificity to PDAC.</p><p><strong>Conclusions: </strong>Our results suggest an ML model developed using blood-based miRNA biomarkers' target gene, pathway, and sequence features could be potentially implicated in PDAC diagnostics.</p>","PeriodicalId":19497,"journal":{"name":"Oncology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000540329","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Pancreatic ductal adenocarcinoma (PDAC) has the lowest survival rate among all major cancers due to a lack of symptoms in early stages, early detection tools, and optimal therapies for late-stage patients. Thus, effective and non-invasive diagnostic tests are greatly needed. Recently, circulating miRNAs have been reported to be altered in PDAC. They are promising biomarkers because of stability in the blood, ease of non-invasive detection, and convenient screening methods. This study aimed to use blood-based miRNA biomarkers and various analysis methods in the development of a machine-learning (ML) model for PDAC.
Methods: Blood-based miRNAs associated with PDAC were collected from open sources. miRNA sequences, targeted genes, and involved pathways were used to construct a set of descriptors for an ML model.
Results: Bioinformatics analysis revealed that most genes in pancreatic cancer and insulin signaling pathways were targeted by the PDAC-related miRNAs. The best-performing ML model with the Random Forest classifier was able to achieve an accuracy of 88.4%. Model evaluations of an independent PDAC-associated miRNAs test set had 100% accuracy while non-cancer miRNAs had 52.4% accuracy, indicating specificity to PDAC.
Conclusions: Our results suggest an ML model developed using blood-based miRNA biomarkers' target gene, pathway, and sequence features could be potentially implicated in PDAC diagnostics.
期刊介绍:
Although laboratory and clinical cancer research need to be closely linked, observations at the basic level often remain removed from medical applications. This journal works to accelerate the translation of experimental results into the clinic, and back again into the laboratory for further investigation. The fundamental purpose of this effort is to advance clinically-relevant knowledge of cancer, and improve the outcome of prevention, diagnosis and treatment of malignant disease. The journal publishes significant clinical studies from cancer programs around the world, along with important translational laboratory findings, mini-reviews (invited and submitted) and in-depth discussions of evolving and controversial topics in the oncology arena. A unique feature of the journal is a new section which focuses on rapid peer-review and subsequent publication of short reports of phase 1 and phase 2 clinical cancer trials, with a goal of insuring that high-quality clinical cancer research quickly enters the public domain, regardless of the trial’s ultimate conclusions regarding efficacy or toxicity.