{"title":"Optimization of microRNA extraction from the plasma of the common carp.","authors":"Yiwen Wan, Xiaoling Li, Xiangyi Chen, Yong He, Wenwen Suo, Xiao Yang, Zhonggui Xie","doi":"10.1080/15257770.2024.2400200","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient and safe extraction of microRNAs (miRNAs) from biological samples is pivotal for genetic regulation studies and biotechnological applications. This study focuses on optimizing the microRNA extraction process from the plasma of common carp, a significant species in aquaculture. Recognizing the limitations and hazards of commercial extraction kits, which often employ toxic chemicals like phenol and chloroform, we sought to develop a safer and more effective alternative. Our optimized protocol utilizes guanidinium isothiocyanate (GITC) and sarkosyl, omitting hazardous substances. We explored several parameters including GITC concentration, the addition of sarkosyl, and the role of sodium chloride in enhancing miRNA yield. Our findings demonstrate that optimal conditions involve a GITC concentration of 4.2 M, a 3% sarkosyl concentration, and the use of sodium chloride at 0.5 M. We also investigated the utility of glycogen as a nucleic acid carrier, finding 160 µg to be the optimal concentration. Comparative analysis with commercial kits indicated our method provides higher miRNA yields with reduced cycle threshold values, underscoring the effectiveness of our custom protocol. This optimized approach not only enhances miRNA recovery but also emphasizes safety and cost-effectiveness, making it a valuable method for both research and practical applications in aquaculture.</p>","PeriodicalId":19343,"journal":{"name":"Nucleosides, Nucleotides & Nucleic Acids","volume":" ","pages":"1-19"},"PeriodicalIF":1.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleosides, Nucleotides & Nucleic Acids","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15257770.2024.2400200","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient and safe extraction of microRNAs (miRNAs) from biological samples is pivotal for genetic regulation studies and biotechnological applications. This study focuses on optimizing the microRNA extraction process from the plasma of common carp, a significant species in aquaculture. Recognizing the limitations and hazards of commercial extraction kits, which often employ toxic chemicals like phenol and chloroform, we sought to develop a safer and more effective alternative. Our optimized protocol utilizes guanidinium isothiocyanate (GITC) and sarkosyl, omitting hazardous substances. We explored several parameters including GITC concentration, the addition of sarkosyl, and the role of sodium chloride in enhancing miRNA yield. Our findings demonstrate that optimal conditions involve a GITC concentration of 4.2 M, a 3% sarkosyl concentration, and the use of sodium chloride at 0.5 M. We also investigated the utility of glycogen as a nucleic acid carrier, finding 160 µg to be the optimal concentration. Comparative analysis with commercial kits indicated our method provides higher miRNA yields with reduced cycle threshold values, underscoring the effectiveness of our custom protocol. This optimized approach not only enhances miRNA recovery but also emphasizes safety and cost-effectiveness, making it a valuable method for both research and practical applications in aquaculture.
期刊介绍:
Nucleosides, Nucleotides & Nucleic Acids publishes research articles, short notices, and concise, critical reviews of related topics that focus on the chemistry and biology of nucleosides, nucleotides, and nucleic acids.
Complete with experimental details, this all-inclusive journal emphasizes the synthesis, biological activities, new and improved synthetic methods, and significant observations related to new compounds.