Collaborative augmented reconstruction of 3D neuron morphology in mouse and human brains.

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Lingli Zhang, Lei Huang, Zexin Yuan, Yuning Hang, Ying Zeng, Kaixiang Li, Lijun Wang, Haoyu Zeng, Xin Chen, Hairuo Zhang, Jiaqi Xi, Danni Chen, Ziqin Gao, Longxin Le, Jie Chen, Wen Ye, Lijuan Liu, Yimin Wang, Hanchuan Peng
{"title":"Collaborative augmented reconstruction of 3D neuron morphology in mouse and human brains.","authors":"Lingli Zhang, Lei Huang, Zexin Yuan, Yuning Hang, Ying Zeng, Kaixiang Li, Lijun Wang, Haoyu Zeng, Xin Chen, Hairuo Zhang, Jiaqi Xi, Danni Chen, Ziqin Gao, Longxin Le, Jie Chen, Wen Ye, Lijuan Liu, Yimin Wang, Hanchuan Peng","doi":"10.1038/s41592-024-02401-8","DOIUrl":null,"url":null,"abstract":"<p><p>Digital reconstruction of the intricate 3D morphology of individual neurons from microscopic images is a crucial challenge in both individual laboratories and large-scale projects focusing on cell types and brain anatomy. This task often fails in both conventional manual reconstruction and state-of-the-art artificial intelligence (AI)-based automatic reconstruction algorithms. It is also challenging to organize multiple neuroanatomists to generate and cross-validate biologically relevant and mutually agreed upon reconstructions in large-scale data production. Based on collaborative group intelligence augmented by AI, we developed a collaborative augmented reconstruction (CAR) platform for neuron reconstruction at scale. This platform allows for immersive interaction and efficient collaborative editing of neuron anatomy using a variety of devices, such as desktop workstations, virtual reality headsets and mobile phones, enabling users to contribute anytime and anywhere and to take advantage of several AI-based automation tools. We tested CAR's applicability for challenging mouse and human neurons toward scaled and faithful data production.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-024-02401-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Digital reconstruction of the intricate 3D morphology of individual neurons from microscopic images is a crucial challenge in both individual laboratories and large-scale projects focusing on cell types and brain anatomy. This task often fails in both conventional manual reconstruction and state-of-the-art artificial intelligence (AI)-based automatic reconstruction algorithms. It is also challenging to organize multiple neuroanatomists to generate and cross-validate biologically relevant and mutually agreed upon reconstructions in large-scale data production. Based on collaborative group intelligence augmented by AI, we developed a collaborative augmented reconstruction (CAR) platform for neuron reconstruction at scale. This platform allows for immersive interaction and efficient collaborative editing of neuron anatomy using a variety of devices, such as desktop workstations, virtual reality headsets and mobile phones, enabling users to contribute anytime and anywhere and to take advantage of several AI-based automation tools. We tested CAR's applicability for challenging mouse and human neurons toward scaled and faithful data production.

Abstract Image

小鼠和人类大脑中三维神经元形态的协作增强重建。
从显微图像中对单个神经元复杂的三维形态进行数字重建,是个人实验室和以细胞类型和大脑解剖为重点的大型项目所面临的重要挑战。无论是传统的手动重建还是基于人工智能(AI)的最新自动重建算法,这项任务都经常失败。在大规模数据生产过程中,组织多名神经解剖学家生成并交叉验证与生物相关且相互认可的重建结果也是一项挑战。基于人工智能增强的协作群体智能,我们开发了一个用于大规模神经元重建的协作增强重建(CAR)平台。该平台允许使用台式工作站、虚拟现实头盔和手机等多种设备对神经元解剖结构进行沉浸式交互和高效协作编辑,使用户能够随时随地作出贡献,并利用多种基于人工智能的自动化工具。我们测试了 CAR 在挑战小鼠和人类神经元方面的适用性,以实现规模化和忠实的数据生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信