Tutorial: a guide to diffusion MRI and structural connectomics.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Ittai Shamir, Yaniv Assaf
{"title":"Tutorial: a guide to diffusion MRI and structural connectomics.","authors":"Ittai Shamir, Yaniv Assaf","doi":"10.1038/s41596-024-01052-5","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion magnetic resonance imaging (dMRI) is a versatile imaging technique that has gained popularity thanks to its sensitive ability to measure displacement of water molecules within a living tissue on a micrometer scale. Although dMRI has been around since the early 1990s, its applications are constantly evolving, primarily regarding the inference of structural connectomics from nerve fiber trajectories. However, these applications require expertise in image processing and statistics, and it can be difficult for a newcomer to choose an appropriate pipeline to fit their research needs, not least because dMRI is such a flexible methodology that dozens of acquisition and analysis pipelines have been developed over the years. This introductory guide is designed for graduate students and researchers in the neuroscience community who are interested in integrating this new methodology regardless of their background in neuroimaging and computational tools. The guide provides a brief overview of the basic dMRI methodologies but focuses on its applications in neuroplasticity and connectomics. The guide starts with dMRI experimental designs and a complete step-by-step pipeline for structural connectomics. The following section covers the basics of dMRI, including parameters and clinical applications (apparent diffusion coefficient, mean diffusivity, fractional anisotropy and microscopic fractional anisotropy), as well as different approaches and models. The final section focuses on structural connectomics, covering subjects from fiber tracking (techniques, evaluation and limitations) to structural networks (constructing, analyzing and visualizing a network).</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01052-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion magnetic resonance imaging (dMRI) is a versatile imaging technique that has gained popularity thanks to its sensitive ability to measure displacement of water molecules within a living tissue on a micrometer scale. Although dMRI has been around since the early 1990s, its applications are constantly evolving, primarily regarding the inference of structural connectomics from nerve fiber trajectories. However, these applications require expertise in image processing and statistics, and it can be difficult for a newcomer to choose an appropriate pipeline to fit their research needs, not least because dMRI is such a flexible methodology that dozens of acquisition and analysis pipelines have been developed over the years. This introductory guide is designed for graduate students and researchers in the neuroscience community who are interested in integrating this new methodology regardless of their background in neuroimaging and computational tools. The guide provides a brief overview of the basic dMRI methodologies but focuses on its applications in neuroplasticity and connectomics. The guide starts with dMRI experimental designs and a complete step-by-step pipeline for structural connectomics. The following section covers the basics of dMRI, including parameters and clinical applications (apparent diffusion coefficient, mean diffusivity, fractional anisotropy and microscopic fractional anisotropy), as well as different approaches and models. The final section focuses on structural connectomics, covering subjects from fiber tracking (techniques, evaluation and limitations) to structural networks (constructing, analyzing and visualizing a network).

Abstract Image

教程:弥散核磁共振成像和结构连接组学指南。
扩散磁共振成像(dMRI)是一种多功能成像技术,由于它能灵敏地测量活体组织内微米尺度的水分子位移,因此广受欢迎。尽管 dMRI 早在 20 世纪 90 年代初就已问世,但其应用仍在不断发展,主要涉及从神经纤维轨迹推断结构连接组学。然而,这些应用需要图像处理和统计方面的专业知识,新手很难选择合适的管道来满足自己的研究需要,尤其是因为 dMRI 是一种非常灵活的方法,多年来已开发出数十种采集和分析管道。本入门指南专为神经科学界对整合这一新方法感兴趣的研究生和研究人员设计,无论他们的神经成像和计算工具背景如何。指南简要概述了基本的 dMRI 方法,但重点介绍了其在神经可塑性和连接组学中的应用。指南首先介绍了 dMRI 实验设计和结构连接组学的完整步骤。接下来的章节介绍了 dMRI 的基础知识,包括参数和临床应用(表观扩散系数、平均扩散率、分数各向异性和微观分数各向异性),以及不同的方法和模型。最后一部分重点介绍结构连接组学,涵盖从纤维追踪(技术、评估和局限性)到结构网络(网络的构建、分析和可视化)等主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信