{"title":"Aromatic components and endophytic fungi during the formation of agarwood in <i>Aquilaria sinensis</i> were induced by exogenous substances.","authors":"Shengjiang Pang, Weiwei Zhao, Qingqing Zhang, Zuwei Tian, Dan Wu, Shuokun Deng, Pei Zhang, Zhongguo Li, Shiling Liu, Baoguo Yang, Guihua Huang, Zaizhi Zhou","doi":"10.3389/fmicb.2024.1446583","DOIUrl":null,"url":null,"abstract":"<p><p>The process of formation of aromatic components for agarwood in <i>Aquilaria sinensis</i> is closely related to endophytic fungi and the result of complex multiple long-term joint interactions with them. However, the interactions between the aromatic components and endophytic fungi remain unclear during the formation of agarwood. In this study, precise mixed solution of hormones, inorganic salts, and fungi was used to induce its formation in <i>A. sinensis</i>, and sample blocks of wood were collected at different times after inoculation. This study showed that the aromatic compounds found in the three treatments of <i>A. sinensis</i> were primarily chromones (31.70-33.65%), terpenes (16.68-27.10%), alkanes (15.99-23.83%), and aromatics (3.13-5.07%). Chromones and terpenes were the primary components that characterized the aroma. The different sampling times had a more pronounced impact on the richness and diversity of endophytic fungal communities in the <i>A. sinensis</i> xylem than the induction treatments. The species annotation of the operational taxonomic units (OTUs) demonstrated that the endophytic fungi were primarily composed of 18 dominant families and 20 dominant genera. A linear regression analysis of the network topology properties with induction time showed that the interactions among the fungal species continued to strengthen, and the network structure tended to become more complex. The terpenes significantly negatively correlated with the Pielou evenness index (<i>p</i> < 0.05), while the chromones significantly positively correlated with the OTUs and Shannon indices.</p>","PeriodicalId":12466,"journal":{"name":"Frontiers in Microbiology","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11371604/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmicb.2024.1446583","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The process of formation of aromatic components for agarwood in Aquilaria sinensis is closely related to endophytic fungi and the result of complex multiple long-term joint interactions with them. However, the interactions between the aromatic components and endophytic fungi remain unclear during the formation of agarwood. In this study, precise mixed solution of hormones, inorganic salts, and fungi was used to induce its formation in A. sinensis, and sample blocks of wood were collected at different times after inoculation. This study showed that the aromatic compounds found in the three treatments of A. sinensis were primarily chromones (31.70-33.65%), terpenes (16.68-27.10%), alkanes (15.99-23.83%), and aromatics (3.13-5.07%). Chromones and terpenes were the primary components that characterized the aroma. The different sampling times had a more pronounced impact on the richness and diversity of endophytic fungal communities in the A. sinensis xylem than the induction treatments. The species annotation of the operational taxonomic units (OTUs) demonstrated that the endophytic fungi were primarily composed of 18 dominant families and 20 dominant genera. A linear regression analysis of the network topology properties with induction time showed that the interactions among the fungal species continued to strengthen, and the network structure tended to become more complex. The terpenes significantly negatively correlated with the Pielou evenness index (p < 0.05), while the chromones significantly positively correlated with the OTUs and Shannon indices.
期刊介绍:
Frontiers in Microbiology is a leading journal in its field, publishing rigorously peer-reviewed research across the entire spectrum of microbiology. Field Chief Editor Martin G. Klotz at Washington State University is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.