{"title":"Achieving endogenous partial denitrification by cultivating denitrifying glycogen-accumulating organisms.","authors":"Lianrong Zhao, Ziwei Chen, Xiaoling Zhang, Aixia Chen","doi":"10.1080/09593330.2024.2398811","DOIUrl":null,"url":null,"abstract":"<p><p>Although anaerobic ammonia oxidation (anammox) is considered a promising process due to its high efficiency and low energy in nitrogen removal, nitrite inadequacy was one of the bottlenecks for the application of anammox. However, endogenous partial denitrification (EPD) has been emerging as a stable pathway to provide nitrite for anammox. Furthermore, denitrifying glycogen-accumulating organisms (DGAOs) are believed to be associated with EPD. In this study, firstly, GAOs were gradually enriched in a sequencing batch reactor (SBR) with the dual strategy of influent phosphorus limitation and withdrawal after the anaerobic stage. DGAOs were successfully induced by adding sodium nitrate solution at the end of the anaerobic stage, resulting in NO<sub>3</sub><sup>-</sup>-N concentration increasing from 15 to 30 mg/L. During a typical SBR cycle, DGAOs contributed up to 96% of the conversion of intracellular carbon sources and up to around 95% of nitrate reduction during the anoxic stage. The maximum nitrate-to-nitrite transformation ratio (NTR) of the system reached 80%. Microbial community analysis demonstrated that the <i>Ca.</i> Compatibactors were the dominant functional bacteria for EPD, with a relative abundance of 31.12%. However, the relative abundance of phosphorous-accumulating organisms (PAOs) was only 1.02%. This study reveals the important role of DGAOs in the EPD process, which can provide a stable nitrite for anammox.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1-11"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2398811","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Although anaerobic ammonia oxidation (anammox) is considered a promising process due to its high efficiency and low energy in nitrogen removal, nitrite inadequacy was one of the bottlenecks for the application of anammox. However, endogenous partial denitrification (EPD) has been emerging as a stable pathway to provide nitrite for anammox. Furthermore, denitrifying glycogen-accumulating organisms (DGAOs) are believed to be associated with EPD. In this study, firstly, GAOs were gradually enriched in a sequencing batch reactor (SBR) with the dual strategy of influent phosphorus limitation and withdrawal after the anaerobic stage. DGAOs were successfully induced by adding sodium nitrate solution at the end of the anaerobic stage, resulting in NO3--N concentration increasing from 15 to 30 mg/L. During a typical SBR cycle, DGAOs contributed up to 96% of the conversion of intracellular carbon sources and up to around 95% of nitrate reduction during the anoxic stage. The maximum nitrate-to-nitrite transformation ratio (NTR) of the system reached 80%. Microbial community analysis demonstrated that the Ca. Compatibactors were the dominant functional bacteria for EPD, with a relative abundance of 31.12%. However, the relative abundance of phosphorous-accumulating organisms (PAOs) was only 1.02%. This study reveals the important role of DGAOs in the EPD process, which can provide a stable nitrite for anammox.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current