Honey Panchal, Drishti Panjwani, Shruti Patel, Priyanka Ahlawat, L D Patel, Abhay Dharamsi, Asha Patel
{"title":"Quantum Dots Functionalized Polymeric Nanoparticles as Cancer Theranostics: An Advanced Nanomedicine Strategy.","authors":"Honey Panchal, Drishti Panjwani, Shruti Patel, Priyanka Ahlawat, L D Patel, Abhay Dharamsi, Asha Patel","doi":"10.2174/0115680096299455240621070820","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cancer is a life-threatening disease prevalent worldwide, but its proper treatment has not yet been developed. Conventional therapies, like chemotherapy, sur-gery, and radiation, have shown relapse and drug resistance. Nanomedicine comprising cancer theranostics based on imaging probes functionalized with polymeric nanoconjugates is acquir-ing importance due to its targeting capability, biodegradability, biocompatibility, capacity for drug loading, and long blood circulation time. The application of synthetic polymers contain-ing anti-cancer agents and functionalizing their surface amenities with diagnostic probes offer a nano-combinatorial model in cancer theranostics.</p><p><strong>Objective: </strong>This study aimed to highlight the recent advancements in quantum dots-functionalized nanoconjugates and substantial progress in advanced polymeric nanomaterials in cancer theragnostics.</p><p><strong>Methods: </strong>This review details the synthetic methods for fabricating Quantum Dots (QDs) and QDs-functionalized polymeric nanoparticles, such as the hydrothermal method, solvothermal technique, atomic layer desorption, electrochemical method, microwave, and ultrasonic method.</p><p><strong>Results: </strong>Conjugating nanoparticles with photo-emitting quantum dots has shown efficacy for real-time monitoring and treating multi-drug-resistant cancer.</p><p><strong>Conclusion: </strong>Quantum dots are used in phototherapy, bioimaging, and medication delivery for cancer therapy. Real-time monitoring of therapy is possible and multiple models of hybridized quantum dots may be created to treat cancer. This review has discovered that numerous at-tempts have been made to conjugate carbon and graphene-based quantum dots with various biomolecules.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115680096299455240621070820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cancer is a life-threatening disease prevalent worldwide, but its proper treatment has not yet been developed. Conventional therapies, like chemotherapy, sur-gery, and radiation, have shown relapse and drug resistance. Nanomedicine comprising cancer theranostics based on imaging probes functionalized with polymeric nanoconjugates is acquir-ing importance due to its targeting capability, biodegradability, biocompatibility, capacity for drug loading, and long blood circulation time. The application of synthetic polymers contain-ing anti-cancer agents and functionalizing their surface amenities with diagnostic probes offer a nano-combinatorial model in cancer theranostics.
Objective: This study aimed to highlight the recent advancements in quantum dots-functionalized nanoconjugates and substantial progress in advanced polymeric nanomaterials in cancer theragnostics.
Methods: This review details the synthetic methods for fabricating Quantum Dots (QDs) and QDs-functionalized polymeric nanoparticles, such as the hydrothermal method, solvothermal technique, atomic layer desorption, electrochemical method, microwave, and ultrasonic method.
Results: Conjugating nanoparticles with photo-emitting quantum dots has shown efficacy for real-time monitoring and treating multi-drug-resistant cancer.
Conclusion: Quantum dots are used in phototherapy, bioimaging, and medication delivery for cancer therapy. Real-time monitoring of therapy is possible and multiple models of hybridized quantum dots may be created to treat cancer. This review has discovered that numerous at-tempts have been made to conjugate carbon and graphene-based quantum dots with various biomolecules.