Xiao-Bing Long , Chong-Rui Yao , Si-Ying Li , Jin-Ge Zhang , Zhi-Jie Lu , Dong-Dong Ma , Yu-Xia Jiang , Guang-Guo Ying , Wen-Jun Shi
{"title":"Multiomics analysis reveal the impact of 17α-Ethinylestradiol on mortality in juvenile zebrafish","authors":"Xiao-Bing Long , Chong-Rui Yao , Si-Ying Li , Jin-Ge Zhang , Zhi-Jie Lu , Dong-Dong Ma , Yu-Xia Jiang , Guang-Guo Ying , Wen-Jun Shi","doi":"10.1016/j.cbpc.2024.110027","DOIUrl":null,"url":null,"abstract":"<div><p>17α-Ethinylestradiol (EE2) is known for its endocrine-disrupting effects on embryonic and adult fish. However, its impact on juvenile zebrafish has not been well established. In this study, juvenile zebrafish were exposed to EE2 at concentrations of 5 ng/L (low dose, L), 10 ng/L (medium dose, M), and 50 ng/L (high dose, H) from 21 days post-fertilization (dpf) to 49 dpf. We assessed their growth, development, behavior, transcriptome, and metabolome. The findings showed that the survival rate in the EE2-H group was 66.8 %, with all surviving fish displaying stunted growth and swollen, transparent abdomens by 49 dpf. Moreover, severe organ deformities were observed in the gills, kidneys, intestines, and heart of fish in both the EE2-H and EE2-M groups. Co-expression analysis of mRNA and lncRNA revealed that EE2 downregulated the transcription of key genes involved in the cell cycle, DNA replication, and Fanconi anemia signaling pathways. Additionally, metabolomic analysis indicated that EE2 influenced metabolism and development-related signaling pathways. These pathways were also significantly identified based on the genes regulated by lncRNA. Consequently, EE2 induced organ deformities and mortality in juvenile zebrafish by disrupting signaling pathways associated with development and metabolism. The results of this study offer new mechanistic insights into the adverse effects of EE2 on juvenile zebrafish based on multiomics analysis. The juvenile zebrafish are highly sensitive to EE2 exposure, which is not limited to adult and embryonic stages. It is a potential model for studying developmental toxicity.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"286 ","pages":"Article 110027"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624001959","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
17α-Ethinylestradiol (EE2) is known for its endocrine-disrupting effects on embryonic and adult fish. However, its impact on juvenile zebrafish has not been well established. In this study, juvenile zebrafish were exposed to EE2 at concentrations of 5 ng/L (low dose, L), 10 ng/L (medium dose, M), and 50 ng/L (high dose, H) from 21 days post-fertilization (dpf) to 49 dpf. We assessed their growth, development, behavior, transcriptome, and metabolome. The findings showed that the survival rate in the EE2-H group was 66.8 %, with all surviving fish displaying stunted growth and swollen, transparent abdomens by 49 dpf. Moreover, severe organ deformities were observed in the gills, kidneys, intestines, and heart of fish in both the EE2-H and EE2-M groups. Co-expression analysis of mRNA and lncRNA revealed that EE2 downregulated the transcription of key genes involved in the cell cycle, DNA replication, and Fanconi anemia signaling pathways. Additionally, metabolomic analysis indicated that EE2 influenced metabolism and development-related signaling pathways. These pathways were also significantly identified based on the genes regulated by lncRNA. Consequently, EE2 induced organ deformities and mortality in juvenile zebrafish by disrupting signaling pathways associated with development and metabolism. The results of this study offer new mechanistic insights into the adverse effects of EE2 on juvenile zebrafish based on multiomics analysis. The juvenile zebrafish are highly sensitive to EE2 exposure, which is not limited to adult and embryonic stages. It is a potential model for studying developmental toxicity.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.