Catalytic Hydrodeoxygenation of Phenols and Cresols to Gasoline Range Biofuels.

IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ahmed A Mohammed, Joy H Tannous
{"title":"Catalytic Hydrodeoxygenation of Phenols and Cresols to Gasoline Range Biofuels.","authors":"Ahmed A Mohammed, Joy H Tannous","doi":"10.1002/tcr.202400092","DOIUrl":null,"url":null,"abstract":"<p><p>Unlike fossil fuels, biomass has oxygen amounts exceeding 10 wt%. Hydrodeoxygenation (HDO) is a crucial step in upgrading biomass to higher heating value liquid fuels. Oxygen removal has many challenges due to the complex chemistry and the high reactivity leading to irreversible catalyst deactivation. In this study, the focus is on the catalytic HDO of aromatic oxygen-containing model compounds in biomass: phenols and cresols. In the current work, literature on catalytic HDO of phenols using molecular hydrogen is reviewed, with a focus on non-nickel-based mono- and bi-metallic catalysts, as nickel-based catalysts were reviewed elsewhere. In addition, the catalytic HDO of m-cresol using molecular hydrogen is examined. This review also addresses the use of hydrogen donors for the HDO of phenols and cresols. The operating conditions, catalysts, products, and yields are summarized to find the catalyst with promising activity and high selectivity toward aromatics. A critical review of the reactions that successfully led to HDO is presented and research gaps related to the HDO of phenols and cresols are highlighted. The conclusions provide potential successful catalyst combinations that can be used for HDO of phenols, cresols, and liquid aromatic hydrocarbons.</p>","PeriodicalId":10046,"journal":{"name":"Chemical record","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical record","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/tcr.202400092","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Unlike fossil fuels, biomass has oxygen amounts exceeding 10 wt%. Hydrodeoxygenation (HDO) is a crucial step in upgrading biomass to higher heating value liquid fuels. Oxygen removal has many challenges due to the complex chemistry and the high reactivity leading to irreversible catalyst deactivation. In this study, the focus is on the catalytic HDO of aromatic oxygen-containing model compounds in biomass: phenols and cresols. In the current work, literature on catalytic HDO of phenols using molecular hydrogen is reviewed, with a focus on non-nickel-based mono- and bi-metallic catalysts, as nickel-based catalysts were reviewed elsewhere. In addition, the catalytic HDO of m-cresol using molecular hydrogen is examined. This review also addresses the use of hydrogen donors for the HDO of phenols and cresols. The operating conditions, catalysts, products, and yields are summarized to find the catalyst with promising activity and high selectivity toward aromatics. A critical review of the reactions that successfully led to HDO is presented and research gaps related to the HDO of phenols and cresols are highlighted. The conclusions provide potential successful catalyst combinations that can be used for HDO of phenols, cresols, and liquid aromatic hydrocarbons.

Abstract Image

催化苯酚和甲酚加氢脱氧生成汽油系列生物燃料。
与化石燃料不同,生物质的含氧量超过 10 wt%。加氢脱氧(HDO)是将生物质升级为高热值液体燃料的关键步骤。由于化学性质复杂,反应活性高,导致催化剂失活不可逆,因此脱氧面临许多挑战。本研究的重点是生物质中芳香族含氧模型化合物(苯酚和甲酚)的催化 HDO。本研究综述了使用分子氢催化苯酚的 HDO 的文献,重点是非镍基单金属和双金属催化剂,因为镍基催化剂已在其他地方进行了综述。此外,还研究了使用分子氢催化间甲酚的 HDO。本综述还讨论了使用氢供体对苯酚和甲酚进行 HDO 的问题。对操作条件、催化剂、产物和收率进行了总结,以找到对芳烃具有良好活性和高选择性的催化剂。对成功实现 HDO 的反应进行了严格审查,并强调了与苯酚和甲酚 HDO 相关的研究空白。结论提供了可用于苯酚、甲酚和液态芳香烃 HDO 的潜在成功催化剂组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical record
Chemical record 化学-化学综合
CiteScore
11.00
自引率
3.00%
发文量
188
审稿时长
>12 weeks
期刊介绍: The Chemical Record (TCR) is a "highlights" journal publishing timely and critical overviews of new developments at the cutting edge of chemistry of interest to a wide audience of chemists (2013 journal impact factor: 5.577). The scope of published reviews includes all areas related to physical chemistry, analytical chemistry, inorganic chemistry, organic chemistry, polymer chemistry, materials chemistry, bioorganic chemistry, biochemistry, biotechnology and medicinal chemistry as well as interdisciplinary fields. TCR provides carefully selected highlight papers by leading researchers that introduce the author''s own experimental and theoretical results in a framework designed to establish perspectives with earlier and contemporary work and provide a critical review of the present state of the subject. The articles are intended to present concise evaluations of current trends in chemistry research to help chemists gain useful insights into fields outside their specialization and provide experts with summaries of recent key developments.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信