{"title":"Quantification of osilodrostat in horse urine using LC/ESI-HRMS to establish an elimination profile for doping control.","authors":"Hideaki Ishii, Ryo Shigematsu, Shunsuke Takemoto, Yuhiro Ishikawa, Fumiaki Mizobe, Motoi Nomura, Daisuke Arima, Hirokazu Kunii, Reiko Yuasa, Takashi Yamanaka, Sohei Tanabe, Shun-Ichi Nagata, Masayuki Yamada, Gary Ngai-Wa Leung","doi":"10.1080/17576180.2024.2385848","DOIUrl":null,"url":null,"abstract":"<p><p><b>Aim:</b> The use of osilodrostat, developed as a medication for Cushing's disease but categorized as an anabolic agent, is banned in horses by both the International Federation of Horseracing Authorities and the Fédération Equestre Internationale. For doping control purposes, elimination profiles of hydrolyzed osilodrostat in horse urine were established and the detectability of free forms of osilodrostat and its major metabolite, mono-hydroxylated osilodrostat (M1c), was investigated.<b>Materials & methods:</b> Post-administration urine samples obtained from a gelding and three mares were analyzed to establish the elimination profiles of osilodrostat using a validated method involving efficient enzymatic hydrolysis followed by LC/ESI-HRMS analysis.<b>Results:</b> Applying the validated quantification method with an LLOQ of 0.05 ng/ml, hydrolyzed osilodrostat could be quantified in post-administration urine samples from 48 to 72 h post-administration; by contrast, both hydrolyzed osilodrostat and M1c were detected up to 2 weeks. In addition, confirmatory analysis identified the presence of hydrolyzed osilodrostat for up to 72 h post-administration.<b>Conclusion:</b> For doping control purposes, we recommend monitoring both hydrolyzed M1c and osilodrostat because of the greater detectability of M1c and the availability of a reference material of osilodrostat, which is essential for confirmatory analysis.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486175/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17576180.2024.2385848","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: The use of osilodrostat, developed as a medication for Cushing's disease but categorized as an anabolic agent, is banned in horses by both the International Federation of Horseracing Authorities and the Fédération Equestre Internationale. For doping control purposes, elimination profiles of hydrolyzed osilodrostat in horse urine were established and the detectability of free forms of osilodrostat and its major metabolite, mono-hydroxylated osilodrostat (M1c), was investigated.Materials & methods: Post-administration urine samples obtained from a gelding and three mares were analyzed to establish the elimination profiles of osilodrostat using a validated method involving efficient enzymatic hydrolysis followed by LC/ESI-HRMS analysis.Results: Applying the validated quantification method with an LLOQ of 0.05 ng/ml, hydrolyzed osilodrostat could be quantified in post-administration urine samples from 48 to 72 h post-administration; by contrast, both hydrolyzed osilodrostat and M1c were detected up to 2 weeks. In addition, confirmatory analysis identified the presence of hydrolyzed osilodrostat for up to 72 h post-administration.Conclusion: For doping control purposes, we recommend monitoring both hydrolyzed M1c and osilodrostat because of the greater detectability of M1c and the availability of a reference material of osilodrostat, which is essential for confirmatory analysis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.