{"title":"Re-identifying farmland carbon neutrality gap under a new carbon counting and the framework of regional interactions in China.","authors":"Jiqun Wen, Xiaowei Chuai, Ai Xiang, Yonghua Liu, Tong Wang, Yuting Luo, Lijuan Miao, Libao Zhang, Jianbao Li, Rongqin Zhao","doi":"10.1016/j.scitotenv.2024.175996","DOIUrl":null,"url":null,"abstract":"<p><p>The farmland ecosystem, with its numerous material cycles and energy flows, is an important part of the carbon cycle in terrestrial ecosystems. Focusing on the carbon neutrality of farmland is meaningful for mitigating global warming and serving national low-carbon strategies. This study enriches the carbon accounting items of farmland and establishes a new research framework to check the carbon neutrality of farmland from the aspect of regional interactions and, subsequently, the inequality among China's provinces. The results revealed that there is still a great gap in the capability of China<sup>'</sup>s farmland to reach carbon neutrality, with a gap value of up to 10,503 × 10<sup>4</sup> t C. All of the provinces presented net carbon emissions, and the per unit area carbon neutrality gaps showed spatial regularity decreasing from the coastal regions to the inland areas. Anthropogenic carbon emissions on farmland played a dominant role compared with soil organic carbon. Five provinces had reduced interior-regional carbon emissions through grain trade, and the amounts were especially high for developed regions, such as Guangdong, Zhejiang, Beijing, Shanghai and Jiangsu. Sixteen provinces gained external carbon emissions through trade; these were the less developed regions located mainly in the north, such as Inner Mongolia, Hebei, Jilin, Heilongjiang and Xinjiang. Under regional inequality, 15 provinces added to the net amount of the carbon emissions generated in external regions, with China's megacities adding the highest percentage, especially Beijing, with 389.95 % compared with its original emissions. Inequality showed that most provinces had a moderate status. Sichuan and Hunan experienced weak advantages, and six provinces had disadvantages. Therefore, constructing compensation and trade-based rights and responsibilities traceability mechanisms is important.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175996","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The farmland ecosystem, with its numerous material cycles and energy flows, is an important part of the carbon cycle in terrestrial ecosystems. Focusing on the carbon neutrality of farmland is meaningful for mitigating global warming and serving national low-carbon strategies. This study enriches the carbon accounting items of farmland and establishes a new research framework to check the carbon neutrality of farmland from the aspect of regional interactions and, subsequently, the inequality among China's provinces. The results revealed that there is still a great gap in the capability of China's farmland to reach carbon neutrality, with a gap value of up to 10,503 × 104 t C. All of the provinces presented net carbon emissions, and the per unit area carbon neutrality gaps showed spatial regularity decreasing from the coastal regions to the inland areas. Anthropogenic carbon emissions on farmland played a dominant role compared with soil organic carbon. Five provinces had reduced interior-regional carbon emissions through grain trade, and the amounts were especially high for developed regions, such as Guangdong, Zhejiang, Beijing, Shanghai and Jiangsu. Sixteen provinces gained external carbon emissions through trade; these were the less developed regions located mainly in the north, such as Inner Mongolia, Hebei, Jilin, Heilongjiang and Xinjiang. Under regional inequality, 15 provinces added to the net amount of the carbon emissions generated in external regions, with China's megacities adding the highest percentage, especially Beijing, with 389.95 % compared with its original emissions. Inequality showed that most provinces had a moderate status. Sichuan and Hunan experienced weak advantages, and six provinces had disadvantages. Therefore, constructing compensation and trade-based rights and responsibilities traceability mechanisms is important.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.