Ziyu Wang, Qinghui Xing, Hao Cheng, Yue Ming, Hong Chen, Xuemei Xu, Zhaowei Wang, Jianbo Han, Jinqiu Du
{"title":"Characteristics and regulatory mechanisms of net ecosystem CO<sub>2</sub> exchange at the water-air interface in coastal aquaculture ponds.","authors":"Ziyu Wang, Qinghui Xing, Hao Cheng, Yue Ming, Hong Chen, Xuemei Xu, Zhaowei Wang, Jianbo Han, Jinqiu Du","doi":"10.1016/j.scitotenv.2024.175965","DOIUrl":null,"url":null,"abstract":"<p><p>Coastal aquaculture ponds represented a biogeochemical hotspot in the global carbon cycle. However, there was a limited understanding of their dynamics. In this study, the eddy covariance (EC) technique was applied to quantify the net ecosystem CO<sub>2</sub> exchange (NEE) over coastal aquaculture ponds in the Liaohe River estuary in northern China during 2020, aiming to investigate and quantify the carbon exchange characteristics of this region. The results showed that (a) a predominant \"U\" shaped diurnal NEE pattern throughout the year. During the sea cucumber monoculture phase, the ponds exhibited a consistent daytime carbon sink and nighttime carbon source pattern. In contrast, during the shrimp and sea cucumber polyculture phase, the ponds mostly remained in a net carbon sink state. (b) NEE was negatively correlated with photosynthetically active radiation (PAR), air temperature (T<sub>air</sub>), and wind speed (WS), while showing a positive correlation with atmospheric pressure (AP). (c) Overall, the entire study area (complex underlying surfaces) functioned as a carbon sink in 2020, with a total net carbon sequestration of 281.533 g C·m<sup>-2</sup>. This was approximately four times greater than the restored wetlands that naturally formed from decommissioned coastal aquaculture ponds. Adjusting for surface heterogeneity revealed that the complex surfaces led to a 34.28 % underestimation of the aquaculture region's unit area carbon sequestration capacity. This study was crucial for assessing the carbon cycling and sequestration functions of coastal aquaculture pond ecosystems and provided a scientific basis for related ecological restoration projects.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.175965","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Coastal aquaculture ponds represented a biogeochemical hotspot in the global carbon cycle. However, there was a limited understanding of their dynamics. In this study, the eddy covariance (EC) technique was applied to quantify the net ecosystem CO2 exchange (NEE) over coastal aquaculture ponds in the Liaohe River estuary in northern China during 2020, aiming to investigate and quantify the carbon exchange characteristics of this region. The results showed that (a) a predominant "U" shaped diurnal NEE pattern throughout the year. During the sea cucumber monoculture phase, the ponds exhibited a consistent daytime carbon sink and nighttime carbon source pattern. In contrast, during the shrimp and sea cucumber polyculture phase, the ponds mostly remained in a net carbon sink state. (b) NEE was negatively correlated with photosynthetically active radiation (PAR), air temperature (Tair), and wind speed (WS), while showing a positive correlation with atmospheric pressure (AP). (c) Overall, the entire study area (complex underlying surfaces) functioned as a carbon sink in 2020, with a total net carbon sequestration of 281.533 g C·m-2. This was approximately four times greater than the restored wetlands that naturally formed from decommissioned coastal aquaculture ponds. Adjusting for surface heterogeneity revealed that the complex surfaces led to a 34.28 % underestimation of the aquaculture region's unit area carbon sequestration capacity. This study was crucial for assessing the carbon cycling and sequestration functions of coastal aquaculture pond ecosystems and provided a scientific basis for related ecological restoration projects.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture