Full-Spectrum Light-Harvesting Solar Thermal Electrocatalyst Boosts Oxygen Evolution

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mingxia Xu, Qiming Bing, Yunchuan Tu, Yunlong Zhang, Mo Zhang, Yafeng Cai, Jinlei Li, Xianguang Meng, Jia Zhu, Prof. Liang Yu, Prof. Dehui Deng
{"title":"Full-Spectrum Light-Harvesting Solar Thermal Electrocatalyst Boosts Oxygen Evolution","authors":"Mingxia Xu,&nbsp;Qiming Bing,&nbsp;Yunchuan Tu,&nbsp;Yunlong Zhang,&nbsp;Mo Zhang,&nbsp;Yafeng Cai,&nbsp;Jinlei Li,&nbsp;Xianguang Meng,&nbsp;Jia Zhu,&nbsp;Prof. Liang Yu,&nbsp;Prof. Dehui Deng","doi":"10.1002/anie.202412049","DOIUrl":null,"url":null,"abstract":"<p>Enabling high-efficiency solar thermal conversion (STC) at catalytic active site is critical but challenging for harnessing solar energy to boost catalytic reactions. Herein, we report the direct integration of full-spectrum STC and high electrocatalytic oxygen evolution activity by fabricating a hierarchical nanocage architecture composed of graphene-encapsulated CoNi nanoparticle. This catalyst exhibits a near-complete 98 % absorptivity of solar spectrum and a high STC efficiency of 97 %, which is superior than previous solar thermal catalytic materials. It delivers a remarkable potential decrease of over 240 mV at various current densities for electrocatalytic oxygen evolution under solar illumination, which is practically unachievable via traditionally heating the system. The high-efficiency STC is enabled by a synergy between the regulated electronic structure of graphene via CoNi-carbon interaction and the multiple absorption of lights by the light-trapping nanocage. Theoretical calculations suggest that high temperature-induced vibrational free energy gain promotes the potential-limiting *O to *OOH step, which decreases the overpotential for oxygen evolution.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"63 52","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202412049","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Enabling high-efficiency solar thermal conversion (STC) at catalytic active site is critical but challenging for harnessing solar energy to boost catalytic reactions. Herein, we report the direct integration of full-spectrum STC and high electrocatalytic oxygen evolution activity by fabricating a hierarchical nanocage architecture composed of graphene-encapsulated CoNi nanoparticle. This catalyst exhibits a near-complete 98 % absorptivity of solar spectrum and a high STC efficiency of 97 %, which is superior than previous solar thermal catalytic materials. It delivers a remarkable potential decrease of over 240 mV at various current densities for electrocatalytic oxygen evolution under solar illumination, which is practically unachievable via traditionally heating the system. The high-efficiency STC is enabled by a synergy between the regulated electronic structure of graphene via CoNi-carbon interaction and the multiple absorption of lights by the light-trapping nanocage. Theoretical calculations suggest that high temperature-induced vibrational free energy gain promotes the potential-limiting *O to *OOH step, which decreases the overpotential for oxygen evolution.

Abstract Image

全光谱光收集太阳热电催化剂促进氧气进化。
在催化活性位点实现高效太阳热转换(STC)对于利用太阳能促进催化反应至关重要,但也极具挑战性。在此,我们报告了通过制造由石墨烯封装钴镍纳米粒子组成的分层纳米笼结构,将全光谱太阳能热转换(STC)和高电催化氧进化活性直接结合在一起的情况。这种催化剂对太阳光谱的吸收率接近 98%,STC 效率高达 97%,优于以往的太阳能热催化材料。在不同的电流密度下,该催化剂在太阳能光照下进行电催化氧进化时的电位下降幅度超过 240 mV,这是传统加热系统几乎无法实现的。通过钴-镍-碳相互作用调节石墨烯的电子结构与光捕获纳米笼对光的多重吸收之间的协同作用使高效 STC 得以实现。理论计算表明,高温诱导的振动自由能增益促进了限制潜能的 O* 到 OOH* 步骤,从而降低了氧进化的过电位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信