Chunyan Zhang, Yonghong Wang, Jun Liu, Tianzeng Chen, Wei Huang, Zirui Liu, Biwu Chu, Qingxin Ma, Hong He
{"title":"Insight into wet scavenging effects on sulfur and nitrogen containing organic compounds in urban Beijing","authors":"Chunyan Zhang, Yonghong Wang, Jun Liu, Tianzeng Chen, Wei Huang, Zirui Liu, Biwu Chu, Qingxin Ma, Hong He","doi":"10.1038/s41612-024-00756-5","DOIUrl":null,"url":null,"abstract":"Sulfur-containing organic compounds (SOCs) and nitrogen-containing organic compounds (NOCs) play critical roles in regulating the physical and chemical properties of organic aerosols (OA), while the understanding of them remains limited. Here, the high-resolution real-time measurements of submicron aerosols were conducted in urban Beijing, mainly to investigate wet scavenging effects on the potential formation and evolution mechanism of OA, especially SOCs and NOCs. OA composition transitioned from being primarily SOCs before wet processes to NOCs after wet processes. Further molecular fragments identification suggested SOCs mainly comprised glycolic acid sulfate formed by aqueous-phase processing during the entire observation, and aromatic- and monoterpene-derived SOCs formed by photochemical processing before snowfall. NOCs species were diverse and dominated by highly oxidized amides and amino acids mainly produced by photochemical processing. This study provided an in-depth insight into the potential formation and evolution pathways of SOCs and NOCs in OA in the urban atmosphere.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00756-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00756-5","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Sulfur-containing organic compounds (SOCs) and nitrogen-containing organic compounds (NOCs) play critical roles in regulating the physical and chemical properties of organic aerosols (OA), while the understanding of them remains limited. Here, the high-resolution real-time measurements of submicron aerosols were conducted in urban Beijing, mainly to investigate wet scavenging effects on the potential formation and evolution mechanism of OA, especially SOCs and NOCs. OA composition transitioned from being primarily SOCs before wet processes to NOCs after wet processes. Further molecular fragments identification suggested SOCs mainly comprised glycolic acid sulfate formed by aqueous-phase processing during the entire observation, and aromatic- and monoterpene-derived SOCs formed by photochemical processing before snowfall. NOCs species were diverse and dominated by highly oxidized amides and amino acids mainly produced by photochemical processing. This study provided an in-depth insight into the potential formation and evolution pathways of SOCs and NOCs in OA in the urban atmosphere.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.