Photothermal catalytic CO2 hydrogenation to methanol on Au/In2O3 nanowires

IF 11.5 Q1 CHEMISTRY, PHYSICAL
Letian Wang, Defu Yao, Chenchen Zhang, Yuzhen Chen, Lilac Amirav, Ziyi Zhong
{"title":"Photothermal catalytic CO2 hydrogenation to methanol on Au/In2O3 nanowires","authors":"Letian Wang, Defu Yao, Chenchen Zhang, Yuzhen Chen, Lilac Amirav, Ziyi Zhong","doi":"10.1016/j.checat.2024.101095","DOIUrl":null,"url":null,"abstract":"<p>Converting CO<sub>2</sub> into energy-rich fuels and high-value chemicals using solar energy is one of the sustainable solutions to mitigate reliance on fossil fuels, yet attaining the required conversion efficiency and selectivity to products such as methanol remains challenging. Here, we present In<sub>2</sub>O<sub>3</sub> nanowires decorated with plasmonic Au nanoparticles with improved activity for photothermal CO<sub>2</sub> hydrogenation to methanol. Under light irradiation, the localized surface plasmon resonance induced by the Au nanoparticles alleviates the thermodynamic constraints of methanol synthesis. This results in a significant increase in methanol production rate (320 μmol·g<sup>−1</sup>·h<sup>−1</sup>) alongside meaningful improvement in methanol selectivity compared with the purely thermal catalytic process. This work provides insights into the benefits of harnessing plasmonic nanoparticles to improve upon thermocatalysis via light utilization.</p>","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":null,"pages":null},"PeriodicalIF":11.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Converting CO2 into energy-rich fuels and high-value chemicals using solar energy is one of the sustainable solutions to mitigate reliance on fossil fuels, yet attaining the required conversion efficiency and selectivity to products such as methanol remains challenging. Here, we present In2O3 nanowires decorated with plasmonic Au nanoparticles with improved activity for photothermal CO2 hydrogenation to methanol. Under light irradiation, the localized surface plasmon resonance induced by the Au nanoparticles alleviates the thermodynamic constraints of methanol synthesis. This results in a significant increase in methanol production rate (320 μmol·g−1·h−1) alongside meaningful improvement in methanol selectivity compared with the purely thermal catalytic process. This work provides insights into the benefits of harnessing plasmonic nanoparticles to improve upon thermocatalysis via light utilization.

Abstract Image

金/In2O3 纳米线光热催化二氧化碳加氢制甲醇
利用太阳能将二氧化碳转化为富含能源的燃料和高价值化学品,是减轻对化石燃料依赖的可持续解决方案之一,但要达到所需的转化效率和对甲醇等产品的选择性仍具有挑战性。在这里,我们展示了用等离子金纳米粒子装饰的 In2O3 纳米线,它在光热 CO2 加氢制甲醇方面具有更高的活性。在光照射下,金纳米粒子诱导的局部表面等离子体共振缓解了甲醇合成的热力学限制。因此,与纯热催化过程相比,甲醇生产率大幅提高(320 μmol-g-1-h-1),同时甲醇选择性也得到显著改善。这项研究深入探讨了利用等离子纳米粒子通过光的利用来改进热催化的益处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信