Microwave-to-Optics Conversion Using Magnetostatic Modes and a Tunable Optical Cavity

IF 9.8 1区 物理与天体物理 Q1 OPTICS
Wei-Jiang Wu, Yi-Pu Wang, Jie Li, Gang Li, Jian-Qiang You
{"title":"Microwave-to-Optics Conversion Using Magnetostatic Modes and a Tunable Optical Cavity","authors":"Wei-Jiang Wu, Yi-Pu Wang, Jie Li, Gang Li, Jian-Qiang You","doi":"10.1002/lpor.202400648","DOIUrl":null,"url":null,"abstract":"Quantum computing, quantum communication, and quantum networks rely on hybrid quantum systems operating in different frequency ranges. For instance, the superconducting qubits work in the gigahertz range, while the optical photons used in communication are in the range of hundreds of terahertz. Due to the large frequency mismatch, achieving the direct coupling and information exchange between different information carriers is generally difficult. Accordingly, a quantum interface is demanded, which serves as a bridge to establish information linkage between different quantum systems operating at distinct frequencies. Recently, the magnon mode in ferromagnetic spin systems has received significant attention. While the inherent weak optomagnonic coupling strength restricts the microwave-to-optical photon conversion efficiency using magnons, the versatility of the magnon modes, together with their readily achievable strong coupling with other quantum systems, endow them with many distinct advantages. Here, the magnon-based microwave-light interface is realized by adopting an optical cavity with adjustable free spectrum range and different kinds of magnetostatic modes in two microwave cavity configurations. By optimizing the parameters, a conversion efficiency of <span data-altimg=\"/cms/asset/a38b58f9-3294-4cf5-846d-7a404ae65165/lpor202400648-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/lpor202400648-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,6\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"1.75 times 10 Superscript negative 8\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"operator\" rspace=\"4\" space=\"4\"><mjx-c></mjx-c></mjx-mo><mjx-msup data-semantic-children=\"2,5\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.393em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"4\" data-semantic-content=\"3\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\" size=\"s\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"5\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" rspace=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:18638880:media:lpor202400648:lpor202400648-math-0001\" display=\"inline\" location=\"graphic/lpor202400648-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,6\" data-semantic-content=\"1\" data-semantic-role=\"unknown\" data-semantic-speech=\"1.75 times 10 Superscript negative 8\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"float\" data-semantic-type=\"number\">1.75</mn><mo data-semantic-=\"\" data-semantic-operator=\"infixop,×\" data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"operator\">×</mo><msup data-semantic-=\"\" data-semantic-children=\"2,5\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\">10</mn><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"4\" data-semantic-content=\"3\" data-semantic-parent=\"6\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\"><mo data-semantic-=\"\" data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"5\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\">−</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">8</mn></mrow></msup></mrow>$1.75\\times 10^{-8}$</annotation></semantics></math></mjx-assistive-mml></mjx-container> with bandwidth of 24 MHz is achieved. The impact of various parameters on the microwave-to-optics conversion is analyzed. The study provides useful guidance and insights to further enhancing the microwave-to-optics conversion efficiency using magnons.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":null,"pages":null},"PeriodicalIF":9.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202400648","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum computing, quantum communication, and quantum networks rely on hybrid quantum systems operating in different frequency ranges. For instance, the superconducting qubits work in the gigahertz range, while the optical photons used in communication are in the range of hundreds of terahertz. Due to the large frequency mismatch, achieving the direct coupling and information exchange between different information carriers is generally difficult. Accordingly, a quantum interface is demanded, which serves as a bridge to establish information linkage between different quantum systems operating at distinct frequencies. Recently, the magnon mode in ferromagnetic spin systems has received significant attention. While the inherent weak optomagnonic coupling strength restricts the microwave-to-optical photon conversion efficiency using magnons, the versatility of the magnon modes, together with their readily achievable strong coupling with other quantum systems, endow them with many distinct advantages. Here, the magnon-based microwave-light interface is realized by adopting an optical cavity with adjustable free spectrum range and different kinds of magnetostatic modes in two microwave cavity configurations. By optimizing the parameters, a conversion efficiency of 1.75×108$1.75\times 10^{-8}$ with bandwidth of 24 MHz is achieved. The impact of various parameters on the microwave-to-optics conversion is analyzed. The study provides useful guidance and insights to further enhancing the microwave-to-optics conversion efficiency using magnons.

Abstract Image

利用磁静态模式和可调谐光腔实现微波到光学转换
量子计算、量子通信和量子网络依赖于在不同频率范围内运行的混合量子系统。例如,超导量子比特在千兆赫范围内工作,而用于通信的光学光子则在数百太赫兹范围内工作。由于频率不匹配,不同信息载体之间一般很难实现直接耦合和信息交换。因此,人们需要一种量子接口,作为在不同频率下运行的不同量子系统之间建立信息联系的桥梁。最近,铁磁自旋系统中的磁子模式受到了极大关注。虽然磁子固有的微弱光磁耦合强度限制了利用磁子进行微波-光子转换的效率,但磁子模式的多功能性,以及它们与其他量子系统容易实现的强耦合,赋予了它们许多独特的优势。在这里,通过在两个微波腔配置中采用自由光谱范围可调的光腔和不同种类的磁静态模式,实现了基于磁子的微波-光接口。通过优化参数,转换效率达到 1.75×10-8$1.75/times 10^{-8}$,带宽为 24 MHz。研究分析了各种参数对微波到光学转换的影响。这项研究为利用磁子进一步提高微波到光学的转换效率提供了有益的指导和启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信