A framework armed with node dynamics for predicting technology convergence

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Guancan Yang , Jiaxin Xing , Shuo Xu , Yuntian Zhao
{"title":"A framework armed with node dynamics for predicting technology convergence","authors":"Guancan Yang ,&nbsp;Jiaxin Xing ,&nbsp;Shuo Xu ,&nbsp;Yuntian Zhao","doi":"10.1016/j.joi.2024.101583","DOIUrl":null,"url":null,"abstract":"<div><p>In the rapidly evolving landscape of industrial and societal progress, technology convergence plays a pivotal role. This dynamic process is usually characterized by the emergence of new nodes and new links. With the long-term and recent interests in predicting technology convergence, link prediction has become the primary approach on the basis of large-scale patent data. Though, the problem of node dynamics is still not addressed in the literature. For this purpose, this paper presents a technology convergence prediction framework with three core modules as follows. (1) A candidate node set is introduced during the network construction phase, mimicking the generation of newly-emerging nodes. (2) An inductive graph representation learning approach is deployed to generate feature vectors for newly-emerging nodes as well as existing ones. (3) The evaluation criteria are revised to shift from the predictable range to the actual predicted range, which can provide a more realistic assessment of predictive performance. Finally, experimental results on the domain of cancer drug development validate the feasibility and effectiveness of our framework in capturing the dynamics of technology convergence, especially concerning the relationships of newly emerged nodes and links. This study provides valuable insights into technology convergence dynamics and points to future research and applications.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751157724000956","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In the rapidly evolving landscape of industrial and societal progress, technology convergence plays a pivotal role. This dynamic process is usually characterized by the emergence of new nodes and new links. With the long-term and recent interests in predicting technology convergence, link prediction has become the primary approach on the basis of large-scale patent data. Though, the problem of node dynamics is still not addressed in the literature. For this purpose, this paper presents a technology convergence prediction framework with three core modules as follows. (1) A candidate node set is introduced during the network construction phase, mimicking the generation of newly-emerging nodes. (2) An inductive graph representation learning approach is deployed to generate feature vectors for newly-emerging nodes as well as existing ones. (3) The evaluation criteria are revised to shift from the predictable range to the actual predicted range, which can provide a more realistic assessment of predictive performance. Finally, experimental results on the domain of cancer drug development validate the feasibility and effectiveness of our framework in capturing the dynamics of technology convergence, especially concerning the relationships of newly emerged nodes and links. This study provides valuable insights into technology convergence dynamics and points to future research and applications.

利用节点动力学预测技术融合的框架
在快速发展的工业和社会进步中,技术融合发挥着举足轻重的作用。这一动态过程通常以新节点和新链接的出现为特征。随着人们对预测技术融合的长期关注和近期兴趣,基于大规模专利数据的链接预测已成为主要方法。不过,文献中仍未涉及节点动态的问题。为此,本文提出了一个技术趋同预测框架,包括以下三个核心模块。(1) 在网络构建阶段引入候选节点集,模拟新出现节点的生成。(2) 采用归纳图表示学习方法,为新出现的节点和现有节点生成特征向量。(3) 对评估标准进行了修订,从可预测范围转向实际预测范围,从而对预测性能进行更真实的评估。最后,癌症药物开发领域的实验结果验证了我们的框架在捕捉技术融合动态方面的可行性和有效性,尤其是在新出现的节点和链接的关系方面。这项研究为技术融合动态提供了宝贵的见解,并为未来的研究和应用指明了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信