A.K. Jagdish , Federico C. Buroni , Roderick Melnik , Luis Rodriguez-Tembleque , Andrés Sáez
{"title":"Flexoelectric anisotropy and shear contributions in lead-free piezocomposites","authors":"A.K. Jagdish , Federico C. Buroni , Roderick Melnik , Luis Rodriguez-Tembleque , Andrés Sáez","doi":"10.1016/j.mechrescom.2024.104321","DOIUrl":null,"url":null,"abstract":"<div><p>Flexoelectricity is the coupling between strain gradients and electric fields. This phenomenon can significantly enhance piezocomposite response in addition to linear piezoelectricity. This enhancement is especially important for lead-free piezocomposites, which generally underperform compared to lead-based counterparts. Flexoelectric enhancement is facilitated by structural anisotropy in piezocomposites. However, challenges in modeling flexoelectric effects arise from several unknowns. Firstly, the shear flexoelectric coefficient is not well-characterized experimentally. Secondly, significant discrepancies exist between theoretical predictions and experimental measurements of flexoelectric coefficients. Thirdly, the influence of matrix mechanical properties on flexoelectric behavior is poorly understood. To address these issues, we construct a parametric flexoelectric model of a lead-free piezocomposite with graded inclusion concentration. We then systematically analyze the impact of each parameter to identify which significantly influence flexoelectric behavior. This study is intended to provide direction to further experimental studies towards understanding and tailoring this subset of parameters.</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0093641324000818/pdfft?md5=2e7cbfe9a01c6ebc3b748b3153a80404&pid=1-s2.0-S0093641324000818-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics Research Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093641324000818","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Flexoelectricity is the coupling between strain gradients and electric fields. This phenomenon can significantly enhance piezocomposite response in addition to linear piezoelectricity. This enhancement is especially important for lead-free piezocomposites, which generally underperform compared to lead-based counterparts. Flexoelectric enhancement is facilitated by structural anisotropy in piezocomposites. However, challenges in modeling flexoelectric effects arise from several unknowns. Firstly, the shear flexoelectric coefficient is not well-characterized experimentally. Secondly, significant discrepancies exist between theoretical predictions and experimental measurements of flexoelectric coefficients. Thirdly, the influence of matrix mechanical properties on flexoelectric behavior is poorly understood. To address these issues, we construct a parametric flexoelectric model of a lead-free piezocomposite with graded inclusion concentration. We then systematically analyze the impact of each parameter to identify which significantly influence flexoelectric behavior. This study is intended to provide direction to further experimental studies towards understanding and tailoring this subset of parameters.
期刊介绍:
Mechanics Research Communications publishes, as rapidly as possible, peer-reviewed manuscripts of high standards but restricted length. It aims to provide:
• a fast means of communication
• an exchange of ideas among workers in mechanics
• an effective method of bringing new results quickly to the public
• an informal vehicle for the discussion
• of ideas that may still be in the formative stages
The field of Mechanics will be understood to encompass the behavior of continua, fluids, solids, particles and their mixtures. Submissions must contain a strong, novel contribution to the field of mechanics, and ideally should be focused on current issues in the field involving theoretical, experimental and/or applied research, preferably within the broad expertise encompassed by the Board of Associate Editors. Deviations from these areas should be discussed in advance with the Editor-in-Chief.