3D chitosan scaffolds loaded with ZnO nanoparticles for bone tissue engineering

IF 5.4 2区 医学 Q1 BIOPHYSICS
{"title":"3D chitosan scaffolds loaded with ZnO nanoparticles for bone tissue engineering","authors":"","doi":"10.1016/j.colsurfb.2024.114199","DOIUrl":null,"url":null,"abstract":"<div><p>Bone defect has always been a difficult problem in clinical work. According to the current research results, tissue engineered scaffolds with a single function, structure, and composition are not sufficient to repair complex bone defects. In this work, a three-dimensional (3D) chitosan degradable composite scaffold loaded with zinc oxide (ZnO) was constructed, and the effect of ZnO content on scaffold performance and osteogenesis was explored. The 3D composite scaffold was prepared by freeze-drying technology. The microstructure, porosity, degradation performance, release performance, swelling performance, cytotoxicity, cell adhesion and osteogenic ability of ZnO nanoparticles and chitosan (ZnONPs/CS) composite scaffolds were measured. The results show that an appropriate amount of ZnO may be helpful to regulate the stability and degradation characteristics of the scaffold to a certain extent. Moreover, the composite scaffold could release ZnO into the simulated body fluid environment. The appropriate amount of ZnO helps to promote the proliferation, adhesion, and osteogenic differentiation of MC3T3-E1 cells. At a ZnO content of 3 wt%, both in vitro and vivo results showed relatively optimal biocompatibility and bioactivity of the scaffolds. This work could at least provide some positive insights for the selection of ZnO dosage, construction of chitosan-based 3D scaffolds, tissue engineering applications, and clinical treatment.</p></div>","PeriodicalId":279,"journal":{"name":"Colloids and Surfaces B: Biointerfaces","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces B: Biointerfaces","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927776524004582","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Bone defect has always been a difficult problem in clinical work. According to the current research results, tissue engineered scaffolds with a single function, structure, and composition are not sufficient to repair complex bone defects. In this work, a three-dimensional (3D) chitosan degradable composite scaffold loaded with zinc oxide (ZnO) was constructed, and the effect of ZnO content on scaffold performance and osteogenesis was explored. The 3D composite scaffold was prepared by freeze-drying technology. The microstructure, porosity, degradation performance, release performance, swelling performance, cytotoxicity, cell adhesion and osteogenic ability of ZnO nanoparticles and chitosan (ZnONPs/CS) composite scaffolds were measured. The results show that an appropriate amount of ZnO may be helpful to regulate the stability and degradation characteristics of the scaffold to a certain extent. Moreover, the composite scaffold could release ZnO into the simulated body fluid environment. The appropriate amount of ZnO helps to promote the proliferation, adhesion, and osteogenic differentiation of MC3T3-E1 cells. At a ZnO content of 3 wt%, both in vitro and vivo results showed relatively optimal biocompatibility and bioactivity of the scaffolds. This work could at least provide some positive insights for the selection of ZnO dosage, construction of chitosan-based 3D scaffolds, tissue engineering applications, and clinical treatment.

用于骨组织工程的负载氧化锌纳米颗粒的三维壳聚糖支架
骨缺损一直是临床工作中的难题。根据目前的研究成果,功能、结构和成分单一的组织工程支架不足以修复复杂的骨缺损。本研究构建了一种负载氧化锌(ZnO)的三维(3D)壳聚糖可降解复合支架,并探讨了氧化锌含量对支架性能和骨生成的影响。该三维复合支架采用冷冻干燥技术制备。测定了 ZnO 纳米颗粒和壳聚糖(ZnONPs/CS)复合支架的微观结构、孔隙率、降解性能、释放性能、膨胀性能、细胞毒性、细胞粘附和成骨能力。结果表明,适量的氧化锌有助于在一定程度上调节支架的稳定性和降解特性。此外,复合支架还能将氧化锌释放到模拟体液环境中。适量的氧化锌有助于促进 MC3T3-E1 细胞的增殖、粘附和成骨分化。在氧化锌含量为 3 wt% 时,体外和体内结果均显示支架具有相对最佳的生物相容性和生物活性。这项工作至少可以为氧化锌用量的选择、壳聚糖基三维支架的构建、组织工程应用和临床治疗提供一些积极的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Colloids and Surfaces B: Biointerfaces
Colloids and Surfaces B: Biointerfaces 生物-材料科学:生物材料
CiteScore
11.10
自引率
3.40%
发文量
730
审稿时长
42 days
期刊介绍: Colloids and Surfaces B: Biointerfaces is an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin, having particular relevance to the medical, pharmaceutical, biotechnological, food and cosmetic fields. Submissions that: (1) deal solely with biological phenomena and do not describe the physico-chemical or colloid-chemical background and/or mechanism of the phenomena, and (2) deal solely with colloid/interfacial phenomena and do not have appropriate biological content or relevance, are outside the scope of the journal and will not be considered for publication. The journal publishes regular research papers, reviews, short communications and invited perspective articles, called BioInterface Perspectives. The BioInterface Perspective provide researchers the opportunity to review their own work, as well as provide insight into the work of others that inspired and influenced the author. Regular articles should have a maximum total length of 6,000 words. In addition, a (combined) maximum of 8 normal-sized figures and/or tables is allowed (so for instance 3 tables and 5 figures). For multiple-panel figures each set of two panels equates to one figure. Short communications should not exceed half of the above. It is required to give on the article cover page a short statistical summary of the article listing the total number of words and tables/figures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信