Renormalon-based resummation of Bjorken polarised sum rule in holomorphic QCD

IF 2.5 3区 物理与天体物理 Q2 PHYSICS, PARTICLES & FIELDS
César Ayala , Camilo Castro-Arriaza , Gorazd Cvetič
{"title":"Renormalon-based resummation of Bjorken polarised sum rule in holomorphic QCD","authors":"César Ayala ,&nbsp;Camilo Castro-Arriaza ,&nbsp;Gorazd Cvetič","doi":"10.1016/j.nuclphysb.2024.116668","DOIUrl":null,"url":null,"abstract":"<div><p>Approximate knowledge of the renormalon structure of the Bjorken polarised sum rule (BSR) <span><math><msubsup><mrow><mover><mrow><mi>Γ</mi></mrow><mo>‾</mo></mover></mrow><mrow><mn>1</mn></mrow><mrow><mi>p</mi><mo>−</mo><mi>n</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> leads to the corresponding BSR characteristic function that allows us to evaluate the leading-twist part of BSR. In our previous work <span><span>[1]</span></span>, this evaluation (resummation) was performed using perturbative QCD (pQCD) coupling <span><math><mi>a</mi><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>≡</mo><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>/</mo><mi>π</mi></math></span> in specific renormalisation schemes. In the present paper, we continue this work, by using instead holomorphic couplings [<span><math><mi>a</mi><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>↦</mo><mi>A</mi><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>] that have no Landau singularities and thus require, in contrast to the pQCD case, no regularisation of the resummation formula. The <span><math><mi>D</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>D</mi><mo>=</mo><mn>4</mn></math></span> terms are included in the Operator Product Expansion (OPE) of inelastic BSR, and fits are performed to the available experimental data in a specific interval <span><math><mo>(</mo><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>min</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>max</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></math></span> where <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>max</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>=</mo><mn>4.74</mn><mspace></mspace><msup><mrow><mi>GeV</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. We needed relatively high <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>min</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≈</mo><mn>1.7</mn><mspace></mspace><msup><mrow><mi>GeV</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> in the pQCD case since the pQCD coupling <span><math><mi>a</mi><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> has Landau singularities at <span><math><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>≲</mo><mn>1</mn><mspace></mspace><msup><mrow><mi>GeV</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. Now, when holomorphic (AQCD) couplings <span><math><mi>A</mi><mo>(</mo><msup><mrow><mi>Q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> are used, no such problems occur: for the 3<em>δ</em>AQCD and 2<em>δ</em>AQCD variants the preferred values are <span><math><msubsup><mrow><mi>Q</mi></mrow><mrow><mi>min</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>≈</mo><mn>0.6</mn><mspace></mspace><msup><mrow><mi>GeV</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>. The preferred values of <span><math><msub><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> in general cannot be unambiguously extracted, due to large uncertainties of the experimental BSR data. At a fixed value of <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>s</mi></mrow><mrow><mover><mrow><mrow><mi>MS</mi></mrow></mrow><mo>‾</mo></mover></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>)</mo></math></span>, the values of the <span><math><mi>D</mi><mo>=</mo><mn>2</mn></math></span> and <span><math><mi>D</mi><mo>=</mo><mn>4</mn></math></span> residue parameters are determined in all cases, with the corresponding uncertainties.</p></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1007 ","pages":"Article 116668"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0550321324002347/pdfft?md5=842e663826ba637998a3b3b4e949dc52&pid=1-s2.0-S0550321324002347-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321324002347","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0

Abstract

Approximate knowledge of the renormalon structure of the Bjorken polarised sum rule (BSR) Γ1pn(Q2) leads to the corresponding BSR characteristic function that allows us to evaluate the leading-twist part of BSR. In our previous work [1], this evaluation (resummation) was performed using perturbative QCD (pQCD) coupling a(Q2)αs(Q2)/π in specific renormalisation schemes. In the present paper, we continue this work, by using instead holomorphic couplings [a(Q2)A(Q2)] that have no Landau singularities and thus require, in contrast to the pQCD case, no regularisation of the resummation formula. The D=2 and D=4 terms are included in the Operator Product Expansion (OPE) of inelastic BSR, and fits are performed to the available experimental data in a specific interval (Qmin2,Qmax2) where Qmax2=4.74GeV2. We needed relatively high Qmin21.7GeV2 in the pQCD case since the pQCD coupling a(Q2) has Landau singularities at Q21GeV2. Now, when holomorphic (AQCD) couplings A(Q2) are used, no such problems occur: for the 3δAQCD and 2δAQCD variants the preferred values are Qmin20.6GeV2. The preferred values of αs in general cannot be unambiguously extracted, due to large uncertainties of the experimental BSR data. At a fixed value of αsMS(MZ2), the values of the D=2 and D=4 residue parameters are determined in all cases, with the corresponding uncertainties.

全形 QCD 中基于正负电子的比约肯极化和则重和
比约肯极化和则(BSR)Γ‾1p-n(Q2)的重正子结构的近似知识导致了相应的 BSR 特征函数,它允许我们评估 BSR 的前导扭曲部分。在我们以前的工作[1]中,这种评估(求和)是使用特定重正化方案中的微扰 QCD(pQCD)耦合 a(Q2)≡αs(Q2)/π进行的。在本文中,我们继续这项工作,改用没有朗道奇点的全形耦合[a(Q2)↦A(Q2)],因此与pQCD情况相反,不需要正则化重和公式。D=2 和 D=4 项被包含在非弹性 BSR 的算子乘积展开(OPE)中,并在特定区间(Qmin2,Qmax2)内对现有实验数据进行拟合,其中 Qmax2=4.74GeV2 。在 pQCD 情况下,我们需要相对较高的 Qmin2≈1.7GeV2 ,因为 pQCD 耦合 a(Q2) 在 Q2≲1GeV2 时具有朗道奇点。现在,当使用全形(AQCD)耦合A(Q2)时,就不会出现这样的问题了:对于3δAQCD和2δAQCD变体,优选值是Qmin2≈0.6GeV2。由于 BSR 实验数据存在很大的不确定性,αs 的优选值一般无法明确提取。在αsMS-‾(MZ2)的固定值下,D=2 和 D=4残留参数的值在所有情况下都能确定,并具有相应的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Physics B
Nuclear Physics B 物理-物理:粒子与场物理
CiteScore
5.50
自引率
7.10%
发文量
302
审稿时长
1 months
期刊介绍: Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信