{"title":"Waste plastic bottles an alternate material for synthesis of metal organic frameworks (MOFs) with potential applications","authors":"Jasleen Kaur , Jonty Kathuria , J. Nagendra Babu , Meenu Arora","doi":"10.1016/j.nxsust.2024.100068","DOIUrl":null,"url":null,"abstract":"<div><p>Polyethylene terephthalate (PET) waste, especially originating from post-consumer bottles, represents a significant environmental hazard owing to its widespread utilization and inadequate biodegradability. Addressing the growing environmental issues associated with plastic waste, the development of sustainable strategies for recycling and utilization is of paramount importance. This study explores the potential of employing waste plastic bottles, specifically PET, as a precursor in the synthesis of Metal-Organic Frameworks (MOFs). The synthesis procedure encompasses the depolymerization of PET to yield terephthalic acid, serving as an organic linker in the formation of MOFs. An analysis of the potential applications of PET-derived MOFs, including catalysis, adsorption, and gas separation, is conducted. The review also highlights prospects and challenges within the field, underscoring the necessity for further refinement, scalability, and commercialization of PET-sourced MOFs. The overarching aim is to foster the advancement of ecologically responsible methods for waste plastic management and the creation of valuable materials through MOF synthesis.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":"5 ","pages":"Article 100068"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294982362400045X/pdfft?md5=4a89528188ee7a644d1173c1f861476b&pid=1-s2.0-S294982362400045X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294982362400045X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Polyethylene terephthalate (PET) waste, especially originating from post-consumer bottles, represents a significant environmental hazard owing to its widespread utilization and inadequate biodegradability. Addressing the growing environmental issues associated with plastic waste, the development of sustainable strategies for recycling and utilization is of paramount importance. This study explores the potential of employing waste plastic bottles, specifically PET, as a precursor in the synthesis of Metal-Organic Frameworks (MOFs). The synthesis procedure encompasses the depolymerization of PET to yield terephthalic acid, serving as an organic linker in the formation of MOFs. An analysis of the potential applications of PET-derived MOFs, including catalysis, adsorption, and gas separation, is conducted. The review also highlights prospects and challenges within the field, underscoring the necessity for further refinement, scalability, and commercialization of PET-sourced MOFs. The overarching aim is to foster the advancement of ecologically responsible methods for waste plastic management and the creation of valuable materials through MOF synthesis.