{"title":"Unconditionally maximum principle-preserving linear method for a mass-conserved Allen–Cahn model with local Lagrange multiplier","authors":"Junxiang Yang , Junseok Kim","doi":"10.1016/j.cnsns.2024.108327","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we present a conservative Allen–Cahn (CAC) equation and investigate its unconditionally maximum principle-preserving linear numerical scheme. The operator splitting strategy is adopted to split the CAC model into a conventional AC equation and a mass correction equation. The standard finite difference method is used to discretize the equations in space. In the first step, the temporal discretization of the AC equation is performed by using the energy factorization technique. The discrete version of the maximum principle-preserving property for the AC equation is unconditionally satisfied. In the second step, we apply mass correction by using an explicit Euler-type approach. Without the constraint of time step, we estimate that the absolute value of the updated solution is bounded by 1. The unique solvability is analytically proved. In each time step, the proposed method is easy to implement because we only need to solve a linear elliptic type equation and then correct the solution in an explicit manner. Various computational experiments in two-dimensional and three-dimensional spaces are performed to confirm the performance of the proposed method. Moreover, the experiments also indicate that the proposed model can be used to simulate two-phase incompressible fluid flows.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424005124","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present a conservative Allen–Cahn (CAC) equation and investigate its unconditionally maximum principle-preserving linear numerical scheme. The operator splitting strategy is adopted to split the CAC model into a conventional AC equation and a mass correction equation. The standard finite difference method is used to discretize the equations in space. In the first step, the temporal discretization of the AC equation is performed by using the energy factorization technique. The discrete version of the maximum principle-preserving property for the AC equation is unconditionally satisfied. In the second step, we apply mass correction by using an explicit Euler-type approach. Without the constraint of time step, we estimate that the absolute value of the updated solution is bounded by 1. The unique solvability is analytically proved. In each time step, the proposed method is easy to implement because we only need to solve a linear elliptic type equation and then correct the solution in an explicit manner. Various computational experiments in two-dimensional and three-dimensional spaces are performed to confirm the performance of the proposed method. Moreover, the experiments also indicate that the proposed model can be used to simulate two-phase incompressible fluid flows.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.