Generating pairs for SL(n, Z)

IF 0.8 2区 数学 Q2 MATHEMATICS
Marston Conder , Georgina Liversidge , Maxim Vsemirnov
{"title":"Generating pairs for SL(n, Z)","authors":"Marston Conder ,&nbsp;Georgina Liversidge ,&nbsp;Maxim Vsemirnov","doi":"10.1016/j.jalgebra.2024.08.008","DOIUrl":null,"url":null,"abstract":"<div><p>It is well known that for all <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, the group <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>Z</mi><mo>)</mo></math></span> has a finite presentation given by its <span><math><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mi>n</mi></math></span> transvections, subject to the Steinberg relations. Also by a 1962 theorem of Trott, if <em>n</em> is odd then <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>Z</mi><mo>)</mo></math></span> is generated by two elements, one of infinite order, and by the combined work of Tamburini, J.S. Wilson and Vsemirnov and others (from 1993 to 2021), it is now known that <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>Z</mi><mo>)</mo></math></span> is generated by two elements of orders 2 and 3 precisely when <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>. On the other hand, little appears to be known about 2-generator presentations for <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>Z</mi><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. In this paper, some finite 2-generator presentations are given for <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>Z</mi><mo>)</mo></math></span>, which as far as the authors are aware, are the only 2-generator finite presentations known for <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mn>3</mn><mo>,</mo><mi>Z</mi><mo>)</mo></math></span>. Also some new generating pairs are given for <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>Z</mi><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>. In particular, some of these extend Trott's 1962 theorem by showing that <span><math><mrow><mi>SL</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>Z</mi><mo>)</mo></math></span> is generated by two elements, one of order 2 and the other of infinite order, for all <span><math><mi>n</mi><mo>&gt;</mo><mn>2</mn></math></span>.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021869324004629/pdfft?md5=656d74ef20d0e8104f0cd832d1d8bd92&pid=1-s2.0-S0021869324004629-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004629","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

It is well known that for all n3, the group SL(n,Z) has a finite presentation given by its n2n transvections, subject to the Steinberg relations. Also by a 1962 theorem of Trott, if n is odd then SL(n,Z) is generated by two elements, one of infinite order, and by the combined work of Tamburini, J.S. Wilson and Vsemirnov and others (from 1993 to 2021), it is now known that SL(n,Z) is generated by two elements of orders 2 and 3 precisely when n5. On the other hand, little appears to be known about 2-generator presentations for SL(n,Z) for n3. In this paper, some finite 2-generator presentations are given for SL(3,Z), which as far as the authors are aware, are the only 2-generator finite presentations known for SL(3,Z). Also some new generating pairs are given for SL(n,Z) for n3. In particular, some of these extend Trott's 1962 theorem by showing that SL(n,Z) is generated by two elements, one of order 2 and the other of infinite order, for all n>2.

SL(n, Z) 的生成对
众所周知,对于所有 n≥3,根据斯坦伯格关系,SL(n,Z)群有一个由其 n2-n 交叉给出的有限呈现。另外,根据特洛特 1962 年的定理,如果 n 为奇数,那么 SL(n,Z) 由两个元素生成,其中一个为无穷阶元素,而通过坦布里尼、威尔逊和弗泽米尔诺夫等人的共同努力(从 1993 年到 2021 年),现在已经知道,正是当 n≥5 时,SL(n,Z) 由两个阶数分别为 2 和 3 的元素生成。另一方面,人们似乎对 n≥3 时 SL(n,Z) 的 2 阶生成器呈现知之甚少。本文给出了 SL(3,Z) 的一些有限的 2 个生成器呈现,据作者所知,这是 SL(3,Z) 唯一已知的 2 个生成器有限呈现。此外,还给出了 n≥3 时 SL(n,Z) 的一些新的生成对。特别是,其中一些定理扩展了特洛特 1962 年的定理,证明了 SL(n,Z) 由两个元素生成,一个是 2 阶元素,另一个是无穷阶元素,适用于所有 n>2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信