{"title":"Twisted tensor products of quantum affine vertex algebras and coproducts","authors":"Fei Kong","doi":"10.1016/j.jalgebra.2024.08.016","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>g</mi></math></span> be a symmetrizable Kac-Moody Lie algebra, and let <span><math><msubsup><mrow><mi>V</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi></mrow></msubsup></math></span>, <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi></mrow></msubsup></math></span> be the quantum affine vertex algebras constructed in <span><span>[11]</span></span>. For any complex numbers <em>ℓ</em> and <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span>, we present an <em>ħ</em>-adic quantum vertex algebra homomorphism Δ from <span><math><msubsup><mrow><mi>V</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi><mo>+</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msubsup></math></span> to the twisted tensor product <em>ħ</em>-adic quantum vertex algebra <span><math><msubsup><mrow><mi>V</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi></mrow></msubsup><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover><msubsup><mrow><mi>V</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msubsup></math></span>. In addition, if both <em>ℓ</em> and <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></math></span> are positive integers, we show that Δ induces an <em>ħ</em>-adic quantum vertex algebra homomorphism from <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi><mo>+</mo><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msubsup></math></span> to the twisted tensor product <em>ħ</em>-adic quantum vertex algebra <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><mi>ℓ</mi></mrow></msubsup><mover><mrow><mo>⊗</mo></mrow><mrow><mo>ˆ</mo></mrow></mover><msubsup><mrow><mi>L</mi></mrow><mrow><mover><mrow><mi>g</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><mi>ħ</mi></mrow><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mo>′</mo></mrow></msup></mrow></msubsup></math></span>. Moreover, we prove the coassociativity of Δ.</p></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324004733","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a symmetrizable Kac-Moody Lie algebra, and let , be the quantum affine vertex algebras constructed in [11]. For any complex numbers ℓ and , we present an ħ-adic quantum vertex algebra homomorphism Δ from to the twisted tensor product ħ-adic quantum vertex algebra . In addition, if both ℓ and are positive integers, we show that Δ induces an ħ-adic quantum vertex algebra homomorphism from to the twisted tensor product ħ-adic quantum vertex algebra . Moreover, we prove the coassociativity of Δ.
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.