An electricity price and energy-efficient workflow scheduling in geographically distributed cloud data centers

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Mehboob Hussain , Lian-Fu Wei , Amir Rehman , Abid Hussain , Muqadar Ali , Muhammad Hafeez Javed
{"title":"An electricity price and energy-efficient workflow scheduling in geographically distributed cloud data centers","authors":"Mehboob Hussain ,&nbsp;Lian-Fu Wei ,&nbsp;Amir Rehman ,&nbsp;Abid Hussain ,&nbsp;Muqadar Ali ,&nbsp;Muhammad Hafeez Javed","doi":"10.1016/j.jksuci.2024.102170","DOIUrl":null,"url":null,"abstract":"<div><p>The cloud computing platform has become a favorable destination for running cloud workflow applications. However, they are primarily complicated and require intensive computing. Task scheduling in cloud environments, when formulated as an optimization problem, is proven to be NP-hard. Thus, efficient task scheduling plays a decisive role in minimizing energy costs. Electricity prices fluctuate depending on the vending company, time, and location. Therefore, optimizing energy costs has become a serious issue that one must consider when building workflow applications scheduling across geographically distributed cloud data centers (GD-CDCs). To tackle this issue, we have suggested a dual optimization approach called electricity price and energy-efficient (EPEE) workflow scheduling algorithm that simultaneously considers energy efficiency and fluctuating electricity prices across GD-CDCs, aims to reach the minimum electricity costs of workflow applications under the deadline constraints. This novel integration of dynamic voltage and frequency scaling (DVFS) with energy and electricity price optimization is unique compared to existing methods. Moreover, our EPEE approach, which includes task prioritization, deadline partitioning, data center selection based on energy efficiency and price diversity, and dynamic task scheduling, provides a comprehensive solution that significantly reduces electricity costs and enhances resource utilization. In addition, the inclusion of both generated and original data transmission times further differentiates our approach, offering a more realistic and practical solution for cloud service providers (CSPs). The experimental results reveal that the EPEE model produces better success rates to meet task deadlines, maximize resource utilization, cost and energy efficiencies in comparison to adapted state-of-the-art algorithms for similar problems.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002593/pdfft?md5=8ba14b81a0951bd08637405a78b6250b&pid=1-s2.0-S1319157824002593-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002593","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The cloud computing platform has become a favorable destination for running cloud workflow applications. However, they are primarily complicated and require intensive computing. Task scheduling in cloud environments, when formulated as an optimization problem, is proven to be NP-hard. Thus, efficient task scheduling plays a decisive role in minimizing energy costs. Electricity prices fluctuate depending on the vending company, time, and location. Therefore, optimizing energy costs has become a serious issue that one must consider when building workflow applications scheduling across geographically distributed cloud data centers (GD-CDCs). To tackle this issue, we have suggested a dual optimization approach called electricity price and energy-efficient (EPEE) workflow scheduling algorithm that simultaneously considers energy efficiency and fluctuating electricity prices across GD-CDCs, aims to reach the minimum electricity costs of workflow applications under the deadline constraints. This novel integration of dynamic voltage and frequency scaling (DVFS) with energy and electricity price optimization is unique compared to existing methods. Moreover, our EPEE approach, which includes task prioritization, deadline partitioning, data center selection based on energy efficiency and price diversity, and dynamic task scheduling, provides a comprehensive solution that significantly reduces electricity costs and enhances resource utilization. In addition, the inclusion of both generated and original data transmission times further differentiates our approach, offering a more realistic and practical solution for cloud service providers (CSPs). The experimental results reveal that the EPEE model produces better success rates to meet task deadlines, maximize resource utilization, cost and energy efficiencies in comparison to adapted state-of-the-art algorithms for similar problems.

地理分布式云数据中心的电价和节能工作流调度
云计算平台已成为运行云工作流应用程序的有利去处。然而,它们主要比较复杂,需要密集的计算。如果将云环境中的任务调度表述为一个优化问题,则证明它是一个 NP 难问题。因此,高效的任务调度对能源成本最小化起着决定性作用。电价随自动售货机公司、时间和地点的不同而波动。因此,在跨地理分布云数据中心(GD-CDC)构建工作流应用调度时,优化能源成本已成为一个必须考虑的重要问题。为解决这一问题,我们提出了一种名为 "电价与能效(EPEE)工作流调度算法 "的双重优化方法,该算法同时考虑了跨 GD-CDC 的能效和波动电价,目的是在截止日期限制下实现工作流应用的最低电费。与现有方法相比,这种将动态电压和频率调整(DVFS)与能源和电价优化相结合的新方法是独一无二的。此外,我们的 EPEE 方法包括任务优先级排序、截止日期分区、基于能效和价格多样性的数据中心选择以及动态任务调度,它提供了一个全面的解决方案,可显著降低电费成本并提高资源利用率。此外,我们的方法还包含了生成数据和原始数据的传输时间,这使我们的方法更加与众不同,为云服务提供商(CSP)提供了更现实、更实用的解决方案。实验结果表明,与适用于类似问题的最先进算法相比,EPEE 模型在满足任务期限要求、最大化资源利用率、成本和能源效率方面具有更高的成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信