Wei Huang , Grizelle González , María Fernanda Barberena-Arias , Weili Liu , Xiaoming Zou
{"title":"Changes in soil arthropods and litter nutrients after prescribed burn in a subtropical moist pastureland","authors":"Wei Huang , Grizelle González , María Fernanda Barberena-Arias , Weili Liu , Xiaoming Zou","doi":"10.1016/j.pedobi.2024.150990","DOIUrl":null,"url":null,"abstract":"<div><p>Plant litter decomposition is driven by soil biota and biophysiochemical conditions as well as substrate quality. Prescribed burns can affect the abundance and diversity of soil arthropods and the biophysiochemical conditions in terrestrial ecosystems. In this study, we examined the effects of a prescribed burn on soil arthropods and litter chemistry in decomposing litter during a total of 469-days field incubation using litter from two grasses, <em>Dichanthium annulatum</em> and <em>Megathyrsus maximus</em>, in a subtropical moist pastureland of Puerto Rico. We found the prescribed burn substantially elevated ultraviolet (UV) radiation and soil temperature; and significantly decreased the diversity of litter total arthropods, especially predators and Mesostigmata mites, during the initial 5 months after the burn. However, the prescribed burn had no effect on either the biophysical environment nor on arthropod abundance and diversity during the subsequent incubation period of >5 months after the burn. Furthermore, the prescribed burn substantially increased the immobilization of iron (Fe) and manganese (Mn), and decreased sulfur (S) concentration in the decomposing litter. Prescribed burn had no interactions with substrate quality for percent mass remaining (PMR) and elemental release or accumulation. Low substrate quality <em>D. annulatum</em> litter with a carbon to phosphorus (C/P) ratio of 614 was associated with higher microbivore diversity and higher predator density than higher substrate quality <em>M. maximus</em> litter with a C/P ratio of 266 during the entire incubation period. Lower initial concentration of litter P, magnesium (Mg) and calcium (Ca) in <em>D. annulatum</em> resulted in higher immobilization of these elements in decomposing litter than in <em>M. maximus</em>. Our study suggest that prescribed burn can impose short-term changes in biophysiochemical conditions and the diversity of arthropods in litter decomposition during the initial recovery period of about 5 months after a burn, thus highlighting a high resilience of the grassland ecosystem to fire disturbance, and that it can bring lasting changes in the cycling of Fe, Mn, and S in subtropical moist pastureland that can alter ecosystem productivity.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"106 ","pages":"Article 150990"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedobiologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003140562403511X","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant litter decomposition is driven by soil biota and biophysiochemical conditions as well as substrate quality. Prescribed burns can affect the abundance and diversity of soil arthropods and the biophysiochemical conditions in terrestrial ecosystems. In this study, we examined the effects of a prescribed burn on soil arthropods and litter chemistry in decomposing litter during a total of 469-days field incubation using litter from two grasses, Dichanthium annulatum and Megathyrsus maximus, in a subtropical moist pastureland of Puerto Rico. We found the prescribed burn substantially elevated ultraviolet (UV) radiation and soil temperature; and significantly decreased the diversity of litter total arthropods, especially predators and Mesostigmata mites, during the initial 5 months after the burn. However, the prescribed burn had no effect on either the biophysical environment nor on arthropod abundance and diversity during the subsequent incubation period of >5 months after the burn. Furthermore, the prescribed burn substantially increased the immobilization of iron (Fe) and manganese (Mn), and decreased sulfur (S) concentration in the decomposing litter. Prescribed burn had no interactions with substrate quality for percent mass remaining (PMR) and elemental release or accumulation. Low substrate quality D. annulatum litter with a carbon to phosphorus (C/P) ratio of 614 was associated with higher microbivore diversity and higher predator density than higher substrate quality M. maximus litter with a C/P ratio of 266 during the entire incubation period. Lower initial concentration of litter P, magnesium (Mg) and calcium (Ca) in D. annulatum resulted in higher immobilization of these elements in decomposing litter than in M. maximus. Our study suggest that prescribed burn can impose short-term changes in biophysiochemical conditions and the diversity of arthropods in litter decomposition during the initial recovery period of about 5 months after a burn, thus highlighting a high resilience of the grassland ecosystem to fire disturbance, and that it can bring lasting changes in the cycling of Fe, Mn, and S in subtropical moist pastureland that can alter ecosystem productivity.
期刊介绍:
Pedobiologia publishes peer reviewed articles describing original work in the field of soil ecology, which includes the study of soil organisms and their interactions with factors in their biotic and abiotic environments.
Analysis of biological structures, interactions, functions, and processes in soil is fundamental for understanding the dynamical nature of terrestrial ecosystems, a prerequisite for appropriate soil management. The scope of this journal consists of fundamental and applied aspects of soil ecology; key focal points include interactions among organisms in soil, organismal controls on soil processes, causes and consequences of soil biodiversity, and aboveground-belowground interactions.
We publish:
original research that tests clearly defined hypotheses addressing topics of current interest in soil ecology (including studies demonstrating nonsignificant effects);
descriptions of novel methodological approaches, or evaluations of current approaches, that address a clear need in soil ecology research;
innovative syntheses of the soil ecology literature, including metaanalyses, topical in depth reviews and short opinion/perspective pieces, and descriptions of original conceptual frameworks; and
short notes reporting novel observations of ecological significance.