{"title":"Effect of alkali and alkaline earth metals on agglomeration in biomass chemical looping gasification","authors":"","doi":"10.1016/j.joei.2024.101815","DOIUrl":null,"url":null,"abstract":"<div><p>By reasonably controlling the lattice oxygen of oxygen carrier (OC), the biomass chemical looping gasification (CLG) technology can convert biomass into syngas dominated by H<sub>2</sub> and CO, which is a prevalent topic in the world. However, in practical applications, the mechanism underlying OC agglomeration induced by alkali and alkaline earth metals (AAEMs), along with effective countermeasures, remain ambiguous. In this paper, AAEM elements were added to the biomass after pickling to explore the effects of K, Na, Ca, and Mg on agglomeration. The results indicated that with the increase of K and Na additions from 0.5 % to 18 %, the deformation temperature (DT) of spent OC decreased, leading to a marked intensification of agglomeration, with degree of agglomeration increases from 2.88 % and 1.74 % to 17.44 % and 13.91 %, respectively. In contrast, with the increase of Ca and Mg additions from 0.5 % to 18 %, the DT of spent OC increased, and the degree of agglomeration remained lower than that of K and Na, with values ranging only from 1.03 % and 0.95 % to 11.17 % and 2.66 %, respectively. Besides, with augmented alkali metal chloride addition, the amount of low melting point aluminosilicates formed from SiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> increased, further exacerbating the OC agglomeration.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124002939","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
By reasonably controlling the lattice oxygen of oxygen carrier (OC), the biomass chemical looping gasification (CLG) technology can convert biomass into syngas dominated by H2 and CO, which is a prevalent topic in the world. However, in practical applications, the mechanism underlying OC agglomeration induced by alkali and alkaline earth metals (AAEMs), along with effective countermeasures, remain ambiguous. In this paper, AAEM elements were added to the biomass after pickling to explore the effects of K, Na, Ca, and Mg on agglomeration. The results indicated that with the increase of K and Na additions from 0.5 % to 18 %, the deformation temperature (DT) of spent OC decreased, leading to a marked intensification of agglomeration, with degree of agglomeration increases from 2.88 % and 1.74 % to 17.44 % and 13.91 %, respectively. In contrast, with the increase of Ca and Mg additions from 0.5 % to 18 %, the DT of spent OC increased, and the degree of agglomeration remained lower than that of K and Na, with values ranging only from 1.03 % and 0.95 % to 11.17 % and 2.66 %, respectively. Besides, with augmented alkali metal chloride addition, the amount of low melting point aluminosilicates formed from SiO2 and Al2O3 increased, further exacerbating the OC agglomeration.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.