{"title":"Feed-forward compensation for emulator-type testing facilities","authors":"","doi":"10.1016/j.ijrefrig.2024.07.023","DOIUrl":null,"url":null,"abstract":"<div><p>Defining the required trackability level of the target condition for the testing facility reconditioning unit represents an unresolved challenge in improving the reproducibility of load-based tests and corresponding performance rating standards development. To enhance the reproducibility of such testing methodology, this paper presents and discusses a new feed-forward compensation technique based on the development of a transfer function model for the delay and offset characteristics of the psychrometric room's air temperature and humidity modulations with reference to the target signal from the room emulator. It is demonstrated that the proposed methodology enables offset and delay reduction in the trackability of the return air condition within 60 s at different testing conditions, enhances the reproducibility of the test results to limit performance deviations to within 2 %, and achieves closely matched controlled parameter modulations during load-based tests.</p></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724002639","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Defining the required trackability level of the target condition for the testing facility reconditioning unit represents an unresolved challenge in improving the reproducibility of load-based tests and corresponding performance rating standards development. To enhance the reproducibility of such testing methodology, this paper presents and discusses a new feed-forward compensation technique based on the development of a transfer function model for the delay and offset characteristics of the psychrometric room's air temperature and humidity modulations with reference to the target signal from the room emulator. It is demonstrated that the proposed methodology enables offset and delay reduction in the trackability of the return air condition within 60 s at different testing conditions, enhances the reproducibility of the test results to limit performance deviations to within 2 %, and achieves closely matched controlled parameter modulations during load-based tests.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.