Generative diffusion models for synthetic trajectories of heavy and light particles in turbulence

IF 3.6 2区 工程技术 Q1 MECHANICS
Tianyi Li , Samuele Tommasi , Michele Buzzicotti , Fabio Bonaccorso , Luca Biferale
{"title":"Generative diffusion models for synthetic trajectories of heavy and light particles in turbulence","authors":"Tianyi Li ,&nbsp;Samuele Tommasi ,&nbsp;Michele Buzzicotti ,&nbsp;Fabio Bonaccorso ,&nbsp;Luca Biferale","doi":"10.1016/j.ijmultiphaseflow.2024.104980","DOIUrl":null,"url":null,"abstract":"<div><p>Heavy and light particles are commonly found in many natural phenomena and industrial processes, such as suspensions of bubbles, dust, and droplets in incompressible turbulent flows. Based on a recent machine learning approach using a diffusion model that successfully generated single tracer trajectories in three-dimensional turbulence and passed most statistical benchmarks across time scales, we extend this model to include heavy and light particles. Given the particle type – tracer, light, or heavy – the model can generate synthetic, realistic trajectories with correct fat-tail distributions for acceleration, anomalous power laws, and scale dependent local slope properties. This work paves the way for future exploration of the use of diffusion models to produce high-quality synthetic datasets for different flow configurations, potentially allowing interpolation between different setups and adaptation to new conditions.</p></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"181 ","pages":"Article 104980"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030193222400257X/pdfft?md5=49263ea7a7377716f19c24f4c46caede&pid=1-s2.0-S030193222400257X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030193222400257X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy and light particles are commonly found in many natural phenomena and industrial processes, such as suspensions of bubbles, dust, and droplets in incompressible turbulent flows. Based on a recent machine learning approach using a diffusion model that successfully generated single tracer trajectories in three-dimensional turbulence and passed most statistical benchmarks across time scales, we extend this model to include heavy and light particles. Given the particle type – tracer, light, or heavy – the model can generate synthetic, realistic trajectories with correct fat-tail distributions for acceleration, anomalous power laws, and scale dependent local slope properties. This work paves the way for future exploration of the use of diffusion models to produce high-quality synthetic datasets for different flow configurations, potentially allowing interpolation between different setups and adaptation to new conditions.

Abstract Image

湍流中轻重粒子合成轨迹的生成扩散模型
轻重粒子常见于许多自然现象和工业过程中,例如不可压缩湍流中的气泡、灰尘和液滴悬浮物。最近,一种机器学习方法使用扩散模型成功生成了三维湍流中的单个示踪剂轨迹,并通过了跨时间尺度的大多数统计基准测试,在此基础上,我们将该模型扩展到重粒子和轻粒子。给定粒子类型--示踪剂、轻粒子或重粒子--该模型就能生成具有正确加速度胖尾分布、反常幂律和与尺度相关的局部斜率特性的合成真实轨迹。这项工作为今后探索利用扩散模型生成不同流动配置的高质量合成数据集铺平了道路,从而有可能在不同设置之间进行插值,并适应新的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信