Letícia Berto , Paula Costa , Alexandre Simões , Ricardo Gudwin , Esther Colombini
{"title":"A motivational-based learning model for mobile robots","authors":"Letícia Berto , Paula Costa , Alexandre Simões , Ricardo Gudwin , Esther Colombini","doi":"10.1016/j.cogsys.2024.101278","DOIUrl":null,"url":null,"abstract":"<div><p>Humans have needs motivating their behavior according to intensity and context. However, we also create preferences associated with each action’s perceived pleasure, which is susceptible to changes over time. This makes decision-making more complex, requiring learning to balance <em>needs</em> and preferences according to the context. To understand how this process works and enable the development of robots with a motivational-based learning model, we computationally model a motivation theory proposed by Hull. In this model, the agent (an abstraction of a mobile robot) is motivated to keep itself in a state of homeostasis. We introduced hedonic dimensions to explore the impact of preferences on decision-making and employed reinforcement learning to train our motivated-based agents. In our experiments, we deploy three agents with distinct energy decay rates, simulating different metabolic rates, within two diverse environments. We investigate the influence of these conditions on their strategies, movement patterns, and overall behavior. The findings reveal that agents excel at learning more effective strategies when the environment allows for choices that align with their metabolic requirements. Furthermore, we observe that incorporating pleasure as a component of the motivational mechanism affects behavior learning, particularly for agents with regular metabolisms depending on the environment. Our study also unveils that, when confronted with survival challenges, agents prioritize immediate <em>needs</em> over pleasure and equilibrium. These insights shed light on how robotic agents can adapt and make informed decisions in demanding scenarios, demonstrating the intricate interplay between motivation, pleasure, and environmental context in autonomous systems.</p></div>","PeriodicalId":55242,"journal":{"name":"Cognitive Systems Research","volume":"88 ","pages":"Article 101278"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Systems Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138904172400072X","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Humans have needs motivating their behavior according to intensity and context. However, we also create preferences associated with each action’s perceived pleasure, which is susceptible to changes over time. This makes decision-making more complex, requiring learning to balance needs and preferences according to the context. To understand how this process works and enable the development of robots with a motivational-based learning model, we computationally model a motivation theory proposed by Hull. In this model, the agent (an abstraction of a mobile robot) is motivated to keep itself in a state of homeostasis. We introduced hedonic dimensions to explore the impact of preferences on decision-making and employed reinforcement learning to train our motivated-based agents. In our experiments, we deploy three agents with distinct energy decay rates, simulating different metabolic rates, within two diverse environments. We investigate the influence of these conditions on their strategies, movement patterns, and overall behavior. The findings reveal that agents excel at learning more effective strategies when the environment allows for choices that align with their metabolic requirements. Furthermore, we observe that incorporating pleasure as a component of the motivational mechanism affects behavior learning, particularly for agents with regular metabolisms depending on the environment. Our study also unveils that, when confronted with survival challenges, agents prioritize immediate needs over pleasure and equilibrium. These insights shed light on how robotic agents can adapt and make informed decisions in demanding scenarios, demonstrating the intricate interplay between motivation, pleasure, and environmental context in autonomous systems.
期刊介绍:
Cognitive Systems Research is dedicated to the study of human-level cognition. As such, it welcomes papers which advance the understanding, design and applications of cognitive and intelligent systems, both natural and artificial.
The journal brings together a broad community studying cognition in its many facets in vivo and in silico, across the developmental spectrum, focusing on individual capacities or on entire architectures. It aims to foster debate and integrate ideas, concepts, constructs, theories, models and techniques from across different disciplines and different perspectives on human-level cognition. The scope of interest includes the study of cognitive capacities and architectures - both brain-inspired and non-brain-inspired - and the application of cognitive systems to real-world problems as far as it offers insights relevant for the understanding of cognition.
Cognitive Systems Research therefore welcomes mature and cutting-edge research approaching cognition from a systems-oriented perspective, both theoretical and empirically-informed, in the form of original manuscripts, short communications, opinion articles, systematic reviews, and topical survey articles from the fields of Cognitive Science (including Philosophy of Cognitive Science), Artificial Intelligence/Computer Science, Cognitive Robotics, Developmental Science, Psychology, and Neuroscience and Neuromorphic Engineering. Empirical studies will be considered if they are supplemented by theoretical analyses and contributions to theory development and/or computational modelling studies.