{"title":"Neural Dynamic Principles for an Intentional Embodied Agent","authors":"Jan Tekülve, Gregor Schöner","doi":"10.1111/cogs.13491","DOIUrl":null,"url":null,"abstract":"<p>How situated embodied agents may achieve goals using knowledge is the classical question of natural and artificial intelligence. How organisms achieve this with their nervous systems is a central challenge for a neural theory of embodied cognition. To structure this challenge, we borrow terms from Searle's analysis of intentionality in its two directions of fit and six psychological modes (perception, memory, belief, intention-in-action, prior intention, desire). We postulate that intentional states are instantiated by neural activation patterns that are stabilized by neural interaction. Dynamic instabilities provide the neural mechanism for initiating and terminating intentional states and are critical to organizing sequences of intentional states. Beliefs represented by networks of concept nodes are autonomously learned and activated in response to desired outcomes. The neural dynamic principles of an intentional agent are demonstrated in a toy scenario in which a robotic agent explores an environment and paints objects in desired colors based on learned color transformation rules.</p>","PeriodicalId":48349,"journal":{"name":"Cognitive Science","volume":"48 9","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cogs.13491","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Science","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cogs.13491","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
How situated embodied agents may achieve goals using knowledge is the classical question of natural and artificial intelligence. How organisms achieve this with their nervous systems is a central challenge for a neural theory of embodied cognition. To structure this challenge, we borrow terms from Searle's analysis of intentionality in its two directions of fit and six psychological modes (perception, memory, belief, intention-in-action, prior intention, desire). We postulate that intentional states are instantiated by neural activation patterns that are stabilized by neural interaction. Dynamic instabilities provide the neural mechanism for initiating and terminating intentional states and are critical to organizing sequences of intentional states. Beliefs represented by networks of concept nodes are autonomously learned and activated in response to desired outcomes. The neural dynamic principles of an intentional agent are demonstrated in a toy scenario in which a robotic agent explores an environment and paints objects in desired colors based on learned color transformation rules.
期刊介绍:
Cognitive Science publishes articles in all areas of cognitive science, covering such topics as knowledge representation, inference, memory processes, learning, problem solving, planning, perception, natural language understanding, connectionism, brain theory, motor control, intentional systems, and other areas of interdisciplinary concern. Highest priority is given to research reports that are specifically written for a multidisciplinary audience. The audience is primarily researchers in cognitive science and its associated fields, including anthropologists, education researchers, psychologists, philosophers, linguists, computer scientists, neuroscientists, and roboticists.