Pharmacology of Adenosine A1 Receptor Agonist in a Humanized Esterase Mouse Seizure Model Following Soman Intoxication.

IF 2.9 3区 医学 Q2 NEUROSCIENCES
Tsung-Ming Shih, Crystal Munoz, Cindy Acon-Chen, Zora-Maya Keith
{"title":"Pharmacology of Adenosine A<sub>1</sub> Receptor Agonist in a Humanized Esterase Mouse Seizure Model Following Soman Intoxication.","authors":"Tsung-Ming Shih, Crystal Munoz, Cindy Acon-Chen, Zora-Maya Keith","doi":"10.1007/s12640-024-00717-z","DOIUrl":null,"url":null,"abstract":"<p><p>Recently a novel genetically modified mouse strain with serum carboxylesterase knocked-out and the human acetylcholinesterase gene knocked-in (KIKO) was created to simulate human responses to nerve agent (NA) exposure and its standard medical treatment. A<sub>1</sub> adenosine receptor (A<sub>1</sub>AR) agonist N-bicyclo-(2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA) alone is a potent anticonvulsant and neuroprotectant (A/N) in both rat and KIKO mouse soman (GD) seizure models. In this study we utilized the KIKO mouse to evaluate further the basic pharmacologic A/N effects of ENBA as an adjunct to standard NA medical treatments (i.e., atropine sulfate, pralidoxime chloride [2-PAM], and midazolam). Male mice, implanted with cortical electroencephalographic (EEG) electrodes, were pretreated with asoxime (HI-6) and exposed to an epileptogenic dose of GD (33 µg/kg, s.c.) or saline (sham exposure) and then treated 15 min after seizure onset with ENBA at 15 mg/kg, i.p. (a minimum efficacy dose in suppressing NA-induced seizure) alone or as an adjunct to standard medical treatments. We collected EEG activity, seizure suppression outcomes, daily body temperature and weight, heart rate, toxic signs, neuropathology, and lethality data for up to 14 days. Without ENBA, death from NA exposure was 45%, while with ENBA, either alone or in combination with midazolam, the survival improved to 80% and 90%, respectively. Additionally, seizure was suppressed quickly and permanently, toxic signs, hypothermia, and bradycardia recovered by 48 h, and no neuropathology was evident. Our findings confirmed that ENBA is a potent A/N adjunct for delayed medical treatments of NA exposure.</p>","PeriodicalId":19193,"journal":{"name":"Neurotoxicity Research","volume":"42 5","pages":"41"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11374867/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurotoxicity Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12640-024-00717-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Recently a novel genetically modified mouse strain with serum carboxylesterase knocked-out and the human acetylcholinesterase gene knocked-in (KIKO) was created to simulate human responses to nerve agent (NA) exposure and its standard medical treatment. A1 adenosine receptor (A1AR) agonist N-bicyclo-(2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA) alone is a potent anticonvulsant and neuroprotectant (A/N) in both rat and KIKO mouse soman (GD) seizure models. In this study we utilized the KIKO mouse to evaluate further the basic pharmacologic A/N effects of ENBA as an adjunct to standard NA medical treatments (i.e., atropine sulfate, pralidoxime chloride [2-PAM], and midazolam). Male mice, implanted with cortical electroencephalographic (EEG) electrodes, were pretreated with asoxime (HI-6) and exposed to an epileptogenic dose of GD (33 µg/kg, s.c.) or saline (sham exposure) and then treated 15 min after seizure onset with ENBA at 15 mg/kg, i.p. (a minimum efficacy dose in suppressing NA-induced seizure) alone or as an adjunct to standard medical treatments. We collected EEG activity, seizure suppression outcomes, daily body temperature and weight, heart rate, toxic signs, neuropathology, and lethality data for up to 14 days. Without ENBA, death from NA exposure was 45%, while with ENBA, either alone or in combination with midazolam, the survival improved to 80% and 90%, respectively. Additionally, seizure was suppressed quickly and permanently, toxic signs, hypothermia, and bradycardia recovered by 48 h, and no neuropathology was evident. Our findings confirmed that ENBA is a potent A/N adjunct for delayed medical treatments of NA exposure.

Abstract Image

腺苷 A1 受体激动剂在人源化酯酶小鼠苏曼中毒后癫痫模型中的药理作用。
最近,一种血清羧化酯酶基因被敲除、人类乙酰胆碱酯酶基因被敲入的新型转基因小鼠品系(KIKO)被创造出来,以模拟人类对神经毒剂(NA)暴露的反应及其标准医疗方法。在大鼠和 KIKO 小鼠索曼(GD)癫痫模型中,单用 A1 腺苷受体(A1AR)激动剂 N-双环-(2.2.1)-庚-2-基-5'-氯-5'-脱氧腺苷(ENBA)可有效抗惊厥和保护神经(A/N)。在本研究中,我们利用 KIKO 小鼠进一步评估了 ENBA 作为标准 NA 药物治疗(即硫酸阿托品、氯化普利多辛 [2-PAM] 和咪达唑仑)的辅助药物的基本药理 A/N 作用。雄性小鼠皮层植入脑电图(EEG)电极,用阿索肟(HI-6)进行预处理,并暴露于致痫剂量的GD(33微克/千克,静脉注射)或生理盐水(假暴露)中,然后在癫痫发作开始15分钟后单独或作为标准药物治疗的辅助治疗,用ENBA治疗,剂量为15毫克/千克,静脉注射(抑制NA诱导的癫痫发作的最小有效剂量)。我们收集了长达14天的脑电图活动、癫痫发作抑制结果、每日体温和体重、心率、中毒症状、神经病理学和致死数据。如果不使用ENBA,因接触NA而死亡的比例为45%,而使用ENBA(无论是单独使用还是与咪达唑仑联合使用)后,存活率分别提高到80%和90%。此外,ENBA还能迅速而持久地抑制癫痫发作,在48小时内恢复中毒症状、低体温和心动过缓,并且没有发现明显的神经病理变化。我们的研究结果证实,ENBA是一种有效的A/N辅助药物,可用于NA暴露的延迟医学治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurotoxicity Research
Neurotoxicity Research 医学-神经科学
CiteScore
7.70
自引率
5.40%
发文量
164
审稿时长
6-12 weeks
期刊介绍: Neurotoxicity Research is an international, interdisciplinary broad-based journal for reporting both basic and clinical research on classical neurotoxicity effects and mechanisms associated with neurodegeneration, necrosis, neuronal apoptosis, nerve regeneration, neurotrophin mechanisms, and topics related to these themes. Published papers have focused on: NEURODEGENERATION and INJURY Neuropathologies Neuronal apoptosis Neuronal necrosis Neural death processes (anatomical, histochemical, neurochemical) Neurodegenerative Disorders Neural Effects of Substances of Abuse NERVE REGENERATION and RESPONSES TO INJURY Neural Adaptations Neurotrophin mechanisms and actions NEURO(CYTO)TOXICITY PROCESSES and NEUROPROTECTION Excitatory amino acids Neurotoxins, endogenous and synthetic Reactive oxygen (nitrogen) species Neuroprotection by endogenous and exogenous agents Papers on related themes are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信