Towards Establishing Best Practice in the Analysis of Hydrogen and Deuterium by Atom Probe Tomography.

IF 2.9 4区 工程技术 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Baptiste Gault, Aparna Saksena, Xavier Sauvage, Paul Bagot, Leonardo S Aota, Jonas Arlt, Lisa T Belkacemi, Torben Boll, Yi-Sheng Chen, Luke Daly, Milos B Djukic, James O Douglas, Maria J Duarte, Peter J Felfer, Richard G Forbes, Jing Fu, Hazel M Gardner, Ryota Gemma, Stephan S A Gerstl, Yilun Gong, Guillaume Hachet, Severin Jakob, Benjamin M Jenkins, Megan E Jones, Heena Khanchandani, Paraskevas Kontis, Mathias Krämer, Markus Kühbach, Ross K W Marceau, David Mayweg, Katie L Moore, Varatharaja Nallathambi, Benedict C Ott, Jonathan D Poplawsky, Ty Prosa, Astrid Pundt, Mainak Saha, Tim M Schwarz, Yuanyuan Shang, Xiao Shen, Maria Vrellou, Yuan Yu, Yujun Zhao, Huan Zhao, Bowen Zou
{"title":"Towards Establishing Best Practice in the Analysis of Hydrogen and Deuterium by Atom Probe Tomography.","authors":"Baptiste Gault, Aparna Saksena, Xavier Sauvage, Paul Bagot, Leonardo S Aota, Jonas Arlt, Lisa T Belkacemi, Torben Boll, Yi-Sheng Chen, Luke Daly, Milos B Djukic, James O Douglas, Maria J Duarte, Peter J Felfer, Richard G Forbes, Jing Fu, Hazel M Gardner, Ryota Gemma, Stephan S A Gerstl, Yilun Gong, Guillaume Hachet, Severin Jakob, Benjamin M Jenkins, Megan E Jones, Heena Khanchandani, Paraskevas Kontis, Mathias Krämer, Markus Kühbach, Ross K W Marceau, David Mayweg, Katie L Moore, Varatharaja Nallathambi, Benedict C Ott, Jonathan D Poplawsky, Ty Prosa, Astrid Pundt, Mainak Saha, Tim M Schwarz, Yuanyuan Shang, Xiao Shen, Maria Vrellou, Yuan Yu, Yujun Zhao, Huan Zhao, Bowen Zou","doi":"10.1093/mam/ozae081","DOIUrl":null,"url":null,"abstract":"<p><p>As hydrogen is touted as a key player in the decarbonization of modern society, it is critical to enable quantitative hydrogen (H) analysis at high spatial resolution and, if possible, at the atomic scale. H has a known deleterious impact on the mechanical properties (strength, ductility, toughness) of most materials that can hinder their use as part of the infrastructure of a hydrogen-based economy. Enabling H mapping including local hydrogen concentration analyses at specific microstructural features is essential for understanding the multiple ways that H affect the properties of materials including embrittlement mechanisms and their synergies. In addition, spatial mapping and quantification of hydrogen isotopes is essential to accurately predict tritium inventory of future fusion power plants thus ensuring their safe and efficient operation. Atom probe tomography (APT) has the intrinsic capability to detect H and deuterium (D), and in principle the capacity for performing quantitative mapping of H within a material's microstructure. Yet, the accuracy and precision of H analysis by APT remain affected by complex field evaporation behavior and the influence of residual hydrogen from the ultrahigh vacuum chamber that can obscure the signal of H from within the material. The present article reports a summary of discussions at a focused workshop held at the Max-Planck Institute for Sustainable Materials in April 2024. The workshop was organized to pave the way to establishing best practices in reporting APT data for the analysis of H. We first summarize the key aspects of the intricacies of H analysis by APT and then propose a path for better reporting of the relevant data to support interpretation of APT-based H analysis in materials.</p>","PeriodicalId":18625,"journal":{"name":"Microscopy and Microanalysis","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy and Microanalysis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/mam/ozae081","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As hydrogen is touted as a key player in the decarbonization of modern society, it is critical to enable quantitative hydrogen (H) analysis at high spatial resolution and, if possible, at the atomic scale. H has a known deleterious impact on the mechanical properties (strength, ductility, toughness) of most materials that can hinder their use as part of the infrastructure of a hydrogen-based economy. Enabling H mapping including local hydrogen concentration analyses at specific microstructural features is essential for understanding the multiple ways that H affect the properties of materials including embrittlement mechanisms and their synergies. In addition, spatial mapping and quantification of hydrogen isotopes is essential to accurately predict tritium inventory of future fusion power plants thus ensuring their safe and efficient operation. Atom probe tomography (APT) has the intrinsic capability to detect H and deuterium (D), and in principle the capacity for performing quantitative mapping of H within a material's microstructure. Yet, the accuracy and precision of H analysis by APT remain affected by complex field evaporation behavior and the influence of residual hydrogen from the ultrahigh vacuum chamber that can obscure the signal of H from within the material. The present article reports a summary of discussions at a focused workshop held at the Max-Planck Institute for Sustainable Materials in April 2024. The workshop was organized to pave the way to establishing best practices in reporting APT data for the analysis of H. We first summarize the key aspects of the intricacies of H analysis by APT and then propose a path for better reporting of the relevant data to support interpretation of APT-based H analysis in materials.

通过原子探针层析技术建立氢和氘分析的最佳实践。
由于氢被誉为现代社会去碳化的关键因素,因此实现高空间分辨率的氢(H)定量分析至关重要,如果可能,还可以实现原子尺度的氢定量分析。众所周知,氢对大多数材料的机械性能(强度、延展性、韧性)都有有害影响,这可能会阻碍它们作为氢基经济基础设施的一部分。绘制氢图谱,包括对特定微结构特征进行局部氢浓度分析,对于了解氢对材料性能的多种影响方式(包括脆化机制及其协同作用)至关重要。此外,氢同位素的空间测绘和定量对于准确预测未来核聚变电站的氚存量,从而确保其安全高效运行至关重要。原子探针层析技术(APT)具有探测氢和氘(D)的内在能力,原则上可以对材料微观结构中的氢进行定量测绘。然而,APT 分析氢的准确性和精确度仍然受到复杂的场蒸发行为和超高真空室残留氢的影响,这些因素可能会掩盖来自材料内部的氢信号。本文报告了 2024 年 4 月在马克斯-普朗克可持续材料研究所举行的重点研讨会的讨论摘要。我们首先总结了 APT 分析氢的复杂性的关键方面,然后提出了更好地报告相关数据的途径,以支持对材料中基于 APT 的氢分析的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microscopy and Microanalysis
Microscopy and Microanalysis 工程技术-材料科学:综合
CiteScore
1.10
自引率
10.70%
发文量
1391
审稿时长
6 months
期刊介绍: Microscopy and Microanalysis publishes original research papers in the fields of microscopy, imaging, and compositional analysis. This distinguished international forum is intended for microscopists in both biology and materials science. The journal provides significant articles that describe new and existing techniques and instrumentation, as well as the applications of these to the imaging and analysis of microstructure. Microscopy and Microanalysis also includes review articles, letters to the editor, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信