{"title":"Chemerin in immunity.","authors":"Mattia Laffranchi, Tiziana Schioppa, Francesca Sozio, Arianna Piserà, Laura Tiberio, Valentina Salvi, Daniela Bosisio, Tiziana Musso, Silvano Sozzani, Annalisa Del Prete","doi":"10.1093/jleuko/qiae181","DOIUrl":null,"url":null,"abstract":"<p><p>Chemerin is a distant member of the cystatin protein family, initially discovered as a chemotactic factor and subsequently also reported to act as adipokine and angiogenetic factor. The biological activity of chemerin is regulated at different levels, such as gene expression, protein processing, and interaction with both signaling and nonsignaling receptors. Chemerin is mostly produced by stromal cells, such as adipocytes, fibroblasts, and epithelial and endothelial cells, and circulates in almost all human tissues as a zymogen that needs to be proteolytically activated to exert its biological functions. At the receptor level, chemerin binds a G protein-coupled 7-transmembrane domain receptor Chemerin1 (also named ChemR23 and CMKLR1), mostly expressed by innate immune cells, such as macrophages, dendritic cells, and natural killer cells, and by border cells. In addition, chemerin may bind GPR1, a weak signaling receptor, and CCRL2, a nonsignaling receptor expressed by barrier cells, such as endothelial and epithelial cells, able to regulate leukocytes' migration by multiple mechanisms. The aim of this review is to summarize the contribution of chemerin in the regulation of immune responses.</p>","PeriodicalId":16186,"journal":{"name":"Journal of Leukocyte Biology","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Leukocyte Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jleuko/qiae181","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemerin is a distant member of the cystatin protein family, initially discovered as a chemotactic factor and subsequently also reported to act as adipokine and angiogenetic factor. The biological activity of chemerin is regulated at different levels, such as gene expression, protein processing, and interaction with both signaling and nonsignaling receptors. Chemerin is mostly produced by stromal cells, such as adipocytes, fibroblasts, and epithelial and endothelial cells, and circulates in almost all human tissues as a zymogen that needs to be proteolytically activated to exert its biological functions. At the receptor level, chemerin binds a G protein-coupled 7-transmembrane domain receptor Chemerin1 (also named ChemR23 and CMKLR1), mostly expressed by innate immune cells, such as macrophages, dendritic cells, and natural killer cells, and by border cells. In addition, chemerin may bind GPR1, a weak signaling receptor, and CCRL2, a nonsignaling receptor expressed by barrier cells, such as endothelial and epithelial cells, able to regulate leukocytes' migration by multiple mechanisms. The aim of this review is to summarize the contribution of chemerin in the regulation of immune responses.
期刊介绍:
JLB is a peer-reviewed, academic journal published by the Society for Leukocyte Biology for its members and the community of immunobiologists. The journal publishes papers devoted to the exploration of the cellular and molecular biology of granulocytes, mononuclear phagocytes, lymphocytes, NK cells, and other cells involved in host physiology and defense/resistance against disease. Since all cells in the body can directly or indirectly contribute to the maintenance of the integrity of the organism and restoration of homeostasis through repair, JLB also considers articles involving epithelial, endothelial, fibroblastic, neural, and other somatic cell types participating in host defense. Studies covering pathophysiology, cell development, differentiation and trafficking; fundamental, translational and clinical immunology, inflammation, extracellular mediators and effector molecules; receptors, signal transduction and genes are considered relevant. Research articles and reviews that provide a novel understanding in any of these fields are given priority as well as technical advances related to leukocyte research methods.