The PS4-likelihood ratio calculator: flexible allocation of evidence weighting for case-control data in variant classification.

IF 3.5 2区 医学 Q2 GENETICS & HEREDITY
Charlie F Rowlands, Alice Garrett, Sophie Allen, Miranda Durkie, George J Burghel, Rachel Robinson, Alison Callaway, Joanne Field, Bethan Frugtniet, Sheila Palmer-Smith, Jonathan Grant, Judith Pagan, Trudi McDevitt, Terri P McVeigh, Helen Hanson, Nicola Whiffin, Michael Jones, Clare Turnbull
{"title":"The PS4-likelihood ratio calculator: flexible allocation of evidence weighting for case-control data in variant classification.","authors":"Charlie F Rowlands, Alice Garrett, Sophie Allen, Miranda Durkie, George J Burghel, Rachel Robinson, Alison Callaway, Joanne Field, Bethan Frugtniet, Sheila Palmer-Smith, Jonathan Grant, Judith Pagan, Trudi McDevitt, Terri P McVeigh, Helen Hanson, Nicola Whiffin, Michael Jones, Clare Turnbull","doi":"10.1136/jmg-2024-110034","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The 2015 American College of Medical Genetics/Association of Molecular Pathology (ACMG/AMP) variant classification framework specifies that case-control observations can be scored as 'strong' evidence (PS4) towards pathogenicity.</p><p><strong>Methods: </strong>We developed the PS4-likelihood ratio calculator (PS4-LRCalc) for quantitative evidence assignment based on the observed variant frequencies in cases and controls. Binomial likelihoods are computed for two models, each defined by prespecified OR thresholds. Model 1 represents the hypothesis of association between variant and phenotype (eg, OR≥5) and model 2 represents the hypothesis of non-association (eg, OR≤1).</p><p><strong>Results: </strong>PS4-LRCalc enables continuous quantitation of evidence for variant classification expressed as a likelihood ratio (LR), which can be log-converted into log LR (evidence points). Using PS4-LRCalc, observed data can be used to quantify evidence towards either pathogenicity or benignity. Variants can also be evaluated against models of different penetrance. The approach is applicable to balanced data sets generated for more common phenotypes and smaller data sets more typical in very rare disease variant evaluation.</p><p><strong>Conclusion: </strong>PS4-LRCalc enables flexible evidence quantitation on a continuous scale for observed case-control data. The converted LR is amenable to incorporation into the now widely used 2018 updated Bayesian ACMG/AMP framework.</p>","PeriodicalId":16237,"journal":{"name":"Journal of Medical Genetics","volume":" ","pages":"983-991"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503184/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Genetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jmg-2024-110034","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The 2015 American College of Medical Genetics/Association of Molecular Pathology (ACMG/AMP) variant classification framework specifies that case-control observations can be scored as 'strong' evidence (PS4) towards pathogenicity.

Methods: We developed the PS4-likelihood ratio calculator (PS4-LRCalc) for quantitative evidence assignment based on the observed variant frequencies in cases and controls. Binomial likelihoods are computed for two models, each defined by prespecified OR thresholds. Model 1 represents the hypothesis of association between variant and phenotype (eg, OR≥5) and model 2 represents the hypothesis of non-association (eg, OR≤1).

Results: PS4-LRCalc enables continuous quantitation of evidence for variant classification expressed as a likelihood ratio (LR), which can be log-converted into log LR (evidence points). Using PS4-LRCalc, observed data can be used to quantify evidence towards either pathogenicity or benignity. Variants can also be evaluated against models of different penetrance. The approach is applicable to balanced data sets generated for more common phenotypes and smaller data sets more typical in very rare disease variant evaluation.

Conclusion: PS4-LRCalc enables flexible evidence quantitation on a continuous scale for observed case-control data. The converted LR is amenable to incorporation into the now widely used 2018 updated Bayesian ACMG/AMP framework.

PS4-似然比计算器:在变异分类中灵活分配病例对照数据的证据权重。
背景:2015年美国医学遗传学会/分子病理学协会(ACMG/AMP)变异体分类框架规定,病例对照观察结果可被评为致病性的 "强 "证据(PS4):方法:我们开发了 PS4-似然比计算器(PS4-LRCalc),用于根据病例和对照中观察到的变异频率进行定量证据分配。我们计算了两个模型的二项式似然比,每个模型都由预设的OR阈值定义。模型 1 代表变异与表型之间相关的假设(如 OR≥5),模型 2 代表不相关的假设(如 OR≤1):PS4-LRCalc能连续量化以似然比(LR)表示的变异分类证据,并可将其对数转换为对数LR(证据点)。使用 PS4-LRCalc,观察到的数据可用于量化致病性或良性证据。还可以根据不同的渗透率模型对变异进行评估。该方法适用于为更常见的表型生成的平衡数据集,以及在非常罕见的疾病变异评估中更为典型的较小数据集:结论:PS4-LRCalc 可以对观察到的病例对照数据进行灵活的连续证据量化。转换后的 LR 适合纳入目前广泛使用的 2018 年更新的贝叶斯 ACMG/AMP 框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Genetics
Journal of Medical Genetics 医学-遗传学
CiteScore
7.60
自引率
2.50%
发文量
92
审稿时长
4-8 weeks
期刊介绍: Journal of Medical Genetics is a leading international peer-reviewed journal covering original research in human genetics, including reviews of and opinion on the latest developments. Articles cover the molecular basis of human disease including germline cancer genetics, clinical manifestations of genetic disorders, applications of molecular genetics to medical practice and the systematic evaluation of such applications worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信