M. Fernandes , L.C. Sousa , C.C. António , S. Silva , S.I.S. Pinto
{"title":"A review of computational methodologies to predict the fractional flow reserve in coronary arteries with stenosis","authors":"M. Fernandes , L.C. Sousa , C.C. António , S. Silva , S.I.S. Pinto","doi":"10.1016/j.jbiomech.2024.112299","DOIUrl":null,"url":null,"abstract":"<div><div>Computational methodologies for predicting the fractional flow reserve (FFR) in coronary arteries with stenosis have gained significant attention due to their potential impact on healthcare outcomes. Coronary artery disease is a leading cause of mortality worldwide, prompting the need for accurate diagnostic and treatment approaches. The use of medical image-based anatomical vascular geometries in computational fluid dynamics (CFD) simulations to evaluate the hemodynamics has emerged as a promising tool in the medical field. This comprehensive review aims to explore the state-of-the-art computational methodologies focusing on the possible considerations. Key aspects include the rheology of blood, boundary conditions, fluid–structure interaction (FSI) between blood and the arterial wall, and multiscale modelling (MM) of stenosis. Through an in-depth analysis of the literature, the goal is to obtain an overview of the major achievements regarding non-invasive methods to compute FFR and to identify existing gaps and challenges that inform further advances in the field. This research has the major objective of improving the current diagnostic capabilities and enhancing patient care in the context of cardiovascular diseases.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"178 ","pages":"Article 112299"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024003774","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Computational methodologies for predicting the fractional flow reserve (FFR) in coronary arteries with stenosis have gained significant attention due to their potential impact on healthcare outcomes. Coronary artery disease is a leading cause of mortality worldwide, prompting the need for accurate diagnostic and treatment approaches. The use of medical image-based anatomical vascular geometries in computational fluid dynamics (CFD) simulations to evaluate the hemodynamics has emerged as a promising tool in the medical field. This comprehensive review aims to explore the state-of-the-art computational methodologies focusing on the possible considerations. Key aspects include the rheology of blood, boundary conditions, fluid–structure interaction (FSI) between blood and the arterial wall, and multiscale modelling (MM) of stenosis. Through an in-depth analysis of the literature, the goal is to obtain an overview of the major achievements regarding non-invasive methods to compute FFR and to identify existing gaps and challenges that inform further advances in the field. This research has the major objective of improving the current diagnostic capabilities and enhancing patient care in the context of cardiovascular diseases.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.