Dechun Jiang, Haiyang Gong, Karl J Niklas, Zhiqiang Wang
{"title":"Allocation of nitrogen and phosphorus in the leaves, stems, and roots of <i>Artemisia</i>: a case study in phylogenetic control.","authors":"Dechun Jiang, Haiyang Gong, Karl J Niklas, Zhiqiang Wang","doi":"10.3389/fpls.2024.1445831","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The allocation of nitrogen (N) and phosphorus (P) among plant organs is an important strategy affecting growth and development as well as ecological processes in terrestrial ecosystems. However, due to lack of systematic investigation data, the allocation strategies of N and P in the three primary plant organs (e.g., leaves, stems and roots) are still unclear.</p><p><strong>Methods: </strong>A total of 912 individuals of 62 <i>Artemisia</i> species were examined across a broad environmental expanse in China, and the N and P concentrations of leaves, stems and roots were measured to explore the allocation strategies in different subgenera, ecosystem types, and local sites.</p><p><strong>Results and discussion: </strong>Across all 62 species, the N vs. P scaling exponents for leaves, stems and roots were 0.67, 0.59 and 0.67, respectively. However, these numerical values differed among subgenera, ecosystem types, and local sites. Overall, the numerical values of N vs. P scaling exponents comply with a 2/3-power function for each <i>Artemisia</i> organ-type reflecting a phylogenetically conserved allocation strategy that has nevertheless diversified with respect to local environmental conditions. These results inform our understanding of N and P stoichiometric patterns and responses to abiotic factors in an ecologically broadly distributed angiosperm genus.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368724/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1445831","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The allocation of nitrogen (N) and phosphorus (P) among plant organs is an important strategy affecting growth and development as well as ecological processes in terrestrial ecosystems. However, due to lack of systematic investigation data, the allocation strategies of N and P in the three primary plant organs (e.g., leaves, stems and roots) are still unclear.
Methods: A total of 912 individuals of 62 Artemisia species were examined across a broad environmental expanse in China, and the N and P concentrations of leaves, stems and roots were measured to explore the allocation strategies in different subgenera, ecosystem types, and local sites.
Results and discussion: Across all 62 species, the N vs. P scaling exponents for leaves, stems and roots were 0.67, 0.59 and 0.67, respectively. However, these numerical values differed among subgenera, ecosystem types, and local sites. Overall, the numerical values of N vs. P scaling exponents comply with a 2/3-power function for each Artemisia organ-type reflecting a phylogenetically conserved allocation strategy that has nevertheless diversified with respect to local environmental conditions. These results inform our understanding of N and P stoichiometric patterns and responses to abiotic factors in an ecologically broadly distributed angiosperm genus.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.