{"title":"Astrogenesis in the hypothalamus: A life-long process contributing to the development and plasticity of neuroendocrine networks","authors":"Ariane Sharif, Vincent Prevot","doi":"10.1016/j.yfrne.2024.101154","DOIUrl":null,"url":null,"abstract":"<div><p>Astrocytes are now recognized as integral components of neural circuits, regulating their maturation, activity and plasticity. Neuroendocrinology has provided fertile ground for revealing the diverse strategies used by astrocytes to regulate the physiological and behavioural outcomes of neural circuit activity in response to internal and environmental inputs. However, the development of astrocytes in the hypothalamus has received much less attention than in other brain regions such as the cerebral cortex and spinal cord. In this review, we synthesize our current knowledge of astrogenesis in the hypothalamus across various life stages. A distinctive feature of hypothalamic astrogenesis is that it persists all throughout lifespan, and involves multiple cellular sources corresponding to radial glial cells during early development, followed by tanycytes, parenchymal progenitors and locally dividing astrocytes. Astrogenesis in the hypothalamus is closely coordinated with the maturation of hypothalamic neurons. This coordination is exemplified by recent findings in neurons producing gonadotropin-releasing hormone, which actively shape their astroglial environment during infancy to integrate functionally into their neural network and facilitate sexual maturation, a process vulnerable to endocrine disruption. While hypothalamic astrogenesis shares common principles with other brain regions, it also exhibits specific features in its dynamics and regulation, both at the inter- and intra-regional levels. These unique properties emphasize the importance of further exploration. Additionally, we discuss the experimental strategies used to assess astrogenesis in the hypothalamus and their potential bias and limitations. Understanding the mechanisms of hypothalamic astrogenesis throughout life will be crucial for comprehending the development and function of the hypothalamus under both physiological and pathological conditions.</p></div>","PeriodicalId":12469,"journal":{"name":"Frontiers in Neuroendocrinology","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0091302224000347/pdfft?md5=a32cadde74f9da395b8daf8afbeaeb3d&pid=1-s2.0-S0091302224000347-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroendocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091302224000347","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Astrocytes are now recognized as integral components of neural circuits, regulating their maturation, activity and plasticity. Neuroendocrinology has provided fertile ground for revealing the diverse strategies used by astrocytes to regulate the physiological and behavioural outcomes of neural circuit activity in response to internal and environmental inputs. However, the development of astrocytes in the hypothalamus has received much less attention than in other brain regions such as the cerebral cortex and spinal cord. In this review, we synthesize our current knowledge of astrogenesis in the hypothalamus across various life stages. A distinctive feature of hypothalamic astrogenesis is that it persists all throughout lifespan, and involves multiple cellular sources corresponding to radial glial cells during early development, followed by tanycytes, parenchymal progenitors and locally dividing astrocytes. Astrogenesis in the hypothalamus is closely coordinated with the maturation of hypothalamic neurons. This coordination is exemplified by recent findings in neurons producing gonadotropin-releasing hormone, which actively shape their astroglial environment during infancy to integrate functionally into their neural network and facilitate sexual maturation, a process vulnerable to endocrine disruption. While hypothalamic astrogenesis shares common principles with other brain regions, it also exhibits specific features in its dynamics and regulation, both at the inter- and intra-regional levels. These unique properties emphasize the importance of further exploration. Additionally, we discuss the experimental strategies used to assess astrogenesis in the hypothalamus and their potential bias and limitations. Understanding the mechanisms of hypothalamic astrogenesis throughout life will be crucial for comprehending the development and function of the hypothalamus under both physiological and pathological conditions.
期刊介绍:
Frontiers in Neuroendocrinology (FIN) publishes a wide range of informative articles including comprehensive reviews, systematic reviews, opinion pieces, and meta-analyses. While the majority of reviews are invited, we also embrace unsolicited reviews and meta-analyses, as well as proposals for thematic special issues, provided they meet our rigorous quality standards. In addition, we encourage authors to submit commentaries that concisely present fresh ideas or offer further analysis to delve deeper into the implications of an article published in our journal.