Priya Kudi, Srijita Sen, Satyajit Murkute, Purusottam Mohapatra, Om Prakash Ranjan
{"title":"Quality by design (QbD) based approach for development of itraconazole-loaded transferosomes for skin cancer: <i>in vitro, ex vivo</i> and cell line studies.","authors":"Priya Kudi, Srijita Sen, Satyajit Murkute, Purusottam Mohapatra, Om Prakash Ranjan","doi":"10.1080/03639045.2024.2400203","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Itraconazole (ITZ), a widely used systemic antifungal drug, has been ingeniously repurposed for its antitumor effects. In the present work, we have prepared and optimized the ITZ-loaded transferosomes by Quality by Design (QbD) approach and repurposed them for skin cancer.</p><p><strong>Methods: </strong>The transferosomal formulation was optimized by employing a QbD approach with the design of experiment. A combination of screening and optimization design was used for formulation optimization. The optimized formulation was characterized by particle size, PDI, zeta potential, FTIR, XRD, and surface morphology using TEM. <i>In vitro</i> and <i>ex vivo</i> studies were performed using Franz diffusion cells. An <i>in vitro</i> cell line study was performed on the human melanoma A375 cell line.</p><p><strong>Results: </strong>The optimized formulation has a particle size of 192.37 ± 13.19 nm, PDI of 0.41 ± 0.03, zeta potential -47.80 ± 3.66, and an entrapment efficiency of 64.11 ± 3.75%. <i>In vitro</i> release studies showed that ITZ encapsulated transferosomes offer higher and sustained release than pure drugs. <i>Ex vivo</i> drug penetration and retention studies show that the penetration and retention of transferosomes are more visible in the skin than in the drug. The cell viability study confirms that ITZ encapsulated transferosomes have almost 2-fold more potency against the A375 cell line than pure drug.</p><p><strong>Conclusion: </strong>ITZ encapsulated transferosomes were successfully prepared and optimized using a combination of screening and optimization designs. Based on <i>ex vivo</i> and cell line studies, we conclude that ITZ-loaded transferosomes could aid melanoma management alongside standard therapies.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2400203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Itraconazole (ITZ), a widely used systemic antifungal drug, has been ingeniously repurposed for its antitumor effects. In the present work, we have prepared and optimized the ITZ-loaded transferosomes by Quality by Design (QbD) approach and repurposed them for skin cancer.
Methods: The transferosomal formulation was optimized by employing a QbD approach with the design of experiment. A combination of screening and optimization design was used for formulation optimization. The optimized formulation was characterized by particle size, PDI, zeta potential, FTIR, XRD, and surface morphology using TEM. In vitro and ex vivo studies were performed using Franz diffusion cells. An in vitro cell line study was performed on the human melanoma A375 cell line.
Results: The optimized formulation has a particle size of 192.37 ± 13.19 nm, PDI of 0.41 ± 0.03, zeta potential -47.80 ± 3.66, and an entrapment efficiency of 64.11 ± 3.75%. In vitro release studies showed that ITZ encapsulated transferosomes offer higher and sustained release than pure drugs. Ex vivo drug penetration and retention studies show that the penetration and retention of transferosomes are more visible in the skin than in the drug. The cell viability study confirms that ITZ encapsulated transferosomes have almost 2-fold more potency against the A375 cell line than pure drug.
Conclusion: ITZ encapsulated transferosomes were successfully prepared and optimized using a combination of screening and optimization designs. Based on ex vivo and cell line studies, we conclude that ITZ-loaded transferosomes could aid melanoma management alongside standard therapies.