Deciphering the cytotoxic potential of acamprosate and acamprosate loaded mesoporous silica nanoparticles in hepatocellular carcinoma: an in vitro and in silico approach.
{"title":"Deciphering the cytotoxic potential of acamprosate and acamprosate loaded mesoporous silica nanoparticles in hepatocellular carcinoma: an <i>in vitro</i> and <i>in silico</i> approach.","authors":"Suhail Ahmad Bhat, Sathyapriya Chandramohan, Srividya Subramanian, Sankar Pajaniradje, Neena Yadav, Rukkumani Rajagopalan","doi":"10.1080/03639045.2024.2400202","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is a healthcare concern that causes most cancer-linked deaths around the world. This work was aimed at unraveling the anticancer potential of acamprosate and development of mesoporous silica nanoparticle (MSN) drug delivery system to increase the therapeutic efficacy of acamprosate. For this purpose, the MSNs were synthesized and encapsulated with acamprosate (MSN-Acamp). The MSN and MSN-Acamp were characterized by DLS, Zeta potential, UV spectroscopy, SEM, FTIR, XRD, DFT, and XPS. Biological effects were evaluated by MTT and lactate dehydrogenase assays. The apoptotic mode of cell death was evaluated by fluorescence imaging and DNA fragmentation assay. Cell cycle assessment and Annexin V-FITC/PI staining were performed to depict the phase of cell arrest and stage of apoptotic cells respectively. The acamprosate was found to exhibit cytotoxic effect and MSN-Acamp exhibited an increased cytotoxicity. Apoptotic mode of cell death was revealed by fluorescence imaging as nuclear fragmentation, production of reactive oxygen species (ROS), loss of membrane potential in mitochondria, and chromatin condensation/fragmentation were found. The docking results revealed that acamprosate had a considerable binding affinity with Bcl-2, Mcl-1, EGFR, and mTOR proteins. Overall, our results indicated that acamprosate and MSN-Acamp had a potent apoptotic effect and MSNs are propitious drug carriers to increase therapeutic effect in HCC.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-20"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2400202","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatocellular carcinoma (HCC) is a healthcare concern that causes most cancer-linked deaths around the world. This work was aimed at unraveling the anticancer potential of acamprosate and development of mesoporous silica nanoparticle (MSN) drug delivery system to increase the therapeutic efficacy of acamprosate. For this purpose, the MSNs were synthesized and encapsulated with acamprosate (MSN-Acamp). The MSN and MSN-Acamp were characterized by DLS, Zeta potential, UV spectroscopy, SEM, FTIR, XRD, DFT, and XPS. Biological effects were evaluated by MTT and lactate dehydrogenase assays. The apoptotic mode of cell death was evaluated by fluorescence imaging and DNA fragmentation assay. Cell cycle assessment and Annexin V-FITC/PI staining were performed to depict the phase of cell arrest and stage of apoptotic cells respectively. The acamprosate was found to exhibit cytotoxic effect and MSN-Acamp exhibited an increased cytotoxicity. Apoptotic mode of cell death was revealed by fluorescence imaging as nuclear fragmentation, production of reactive oxygen species (ROS), loss of membrane potential in mitochondria, and chromatin condensation/fragmentation were found. The docking results revealed that acamprosate had a considerable binding affinity with Bcl-2, Mcl-1, EGFR, and mTOR proteins. Overall, our results indicated that acamprosate and MSN-Acamp had a potent apoptotic effect and MSNs are propitious drug carriers to increase therapeutic effect in HCC.
期刊介绍:
The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.