Lilian R Hiltebeitel, Steve Seltzsam, Chunyan Wang, Ted Lee, Leah Bolsius, Mohamed Shalaby, Sherif El Desoky, Jameela A Kari, Shirlee Shril, Friedhelm Hildebrandt, Nina Mann
{"title":"Genetic Contributions to Lower Urinary Tract Dysfunction.","authors":"Lilian R Hiltebeitel, Steve Seltzsam, Chunyan Wang, Ted Lee, Leah Bolsius, Mohamed Shalaby, Sherif El Desoky, Jameela A Kari, Shirlee Shril, Friedhelm Hildebrandt, Nina Mann","doi":"10.1002/ajmg.a.63859","DOIUrl":null,"url":null,"abstract":"<p><p>Lower urinary tract dysfunction (LUTD) can manifest as a spectrum of voiding symptoms in childhood, including urinary urgency, frequency, hesitancy, and incontinence. In severe cases, it can lead to frequent urinary tract infections, hydronephrosis, kidney scarring, and chronic kidney disease. Non-neurogenic neurogenic bladder (NNNB) is a diagnosis of exclusion in which children develop discoordination between the detrusor smooth muscle and external urethral sphincter in the absence of neurological or obstructive lesions, resulting in severe LUTD. Historically, such disorders of voiding were thought to result from behavioral maladaptation. However, it is now increasingly recognized that some individuals may have an underlying genetic etiology for their symptoms. Here, we performed exome sequencing for five probands with NNNB or other forms of severe LUTD, and we identified two individuals with monogenic etiologies for their symptoms. One individual had a homozygous exon 9 deletion in HPSE2 and another had a homozygous single amino acid deletion (p.Gly167del) in ARL6. We performed PCR experiments to identify the breakpoints of the HPSE2 exon 9 deletion and implicate microhomology-mediated end joining as a potential mechanism by which the deletion arose. These findings suggest that genetic testing should be considered for children with severe LUTD.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ajmg.a.63859","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lower urinary tract dysfunction (LUTD) can manifest as a spectrum of voiding symptoms in childhood, including urinary urgency, frequency, hesitancy, and incontinence. In severe cases, it can lead to frequent urinary tract infections, hydronephrosis, kidney scarring, and chronic kidney disease. Non-neurogenic neurogenic bladder (NNNB) is a diagnosis of exclusion in which children develop discoordination between the detrusor smooth muscle and external urethral sphincter in the absence of neurological or obstructive lesions, resulting in severe LUTD. Historically, such disorders of voiding were thought to result from behavioral maladaptation. However, it is now increasingly recognized that some individuals may have an underlying genetic etiology for their symptoms. Here, we performed exome sequencing for five probands with NNNB or other forms of severe LUTD, and we identified two individuals with monogenic etiologies for their symptoms. One individual had a homozygous exon 9 deletion in HPSE2 and another had a homozygous single amino acid deletion (p.Gly167del) in ARL6. We performed PCR experiments to identify the breakpoints of the HPSE2 exon 9 deletion and implicate microhomology-mediated end joining as a potential mechanism by which the deletion arose. These findings suggest that genetic testing should be considered for children with severe LUTD.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.