Tian Qin, Tao Chen, Rui Ma, Huan Li, Cui Li, Jin Zhao, Jinguo Yuan, Zuoming Zhang, Xiaoxuan Ning
{"title":"Stress Hormones: Unveiling the Role in Accelerated Cellular Senescence.","authors":"Tian Qin, Tao Chen, Rui Ma, Huan Li, Cui Li, Jin Zhao, Jinguo Yuan, Zuoming Zhang, Xiaoxuan Ning","doi":"10.14336/AD.2024.0262","DOIUrl":null,"url":null,"abstract":"<p><p>Cellular senescence is a complex process involving multiple factors, such as genetics, environment, and behavior. However, recent studies have shown that stress also plays a crucial role in inducing cellular senescence. Stress can affect cellular function and structure through various pathways, leading to accelerated aging. Exposure to stressful conditions can alter the neuroendocrine system, activate the hypothalamus-pituitary-adrenal axis and sympathetic adrenal medullary axis, and release cortisol and catecholamines, causing mitochondrial dysfunction, generating excessive reactive oxygen species, and inducing oxidative stress, DNA damage, and inflammatory reactions, ultimately resulting in accelerated cellular senescence. The process of stress-induced cellular senescence has been implicated in a number of chronic diseases, including age-related macular degeneration, chronic kidney disease, type 2 diabetes, cardiovascular disease and obstructive sleep apnea. In this review, we integrate recent progress research progress in our understanding of the mechanisms of stress-induced cellular senescence and discuss its underlying mechanisms from the perspective of stress hormones. We review potential therapeutic targets for stress-induced premature senescence and discuss the advantages and limitations of existing pharmacological agents capable of ameliorating stress-induced premature senescence.</p>","PeriodicalId":7434,"journal":{"name":"Aging and Disease","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14336/AD.2024.0262","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cellular senescence is a complex process involving multiple factors, such as genetics, environment, and behavior. However, recent studies have shown that stress also plays a crucial role in inducing cellular senescence. Stress can affect cellular function and structure through various pathways, leading to accelerated aging. Exposure to stressful conditions can alter the neuroendocrine system, activate the hypothalamus-pituitary-adrenal axis and sympathetic adrenal medullary axis, and release cortisol and catecholamines, causing mitochondrial dysfunction, generating excessive reactive oxygen species, and inducing oxidative stress, DNA damage, and inflammatory reactions, ultimately resulting in accelerated cellular senescence. The process of stress-induced cellular senescence has been implicated in a number of chronic diseases, including age-related macular degeneration, chronic kidney disease, type 2 diabetes, cardiovascular disease and obstructive sleep apnea. In this review, we integrate recent progress research progress in our understanding of the mechanisms of stress-induced cellular senescence and discuss its underlying mechanisms from the perspective of stress hormones. We review potential therapeutic targets for stress-induced premature senescence and discuss the advantages and limitations of existing pharmacological agents capable of ameliorating stress-induced premature senescence.
期刊介绍:
Aging & Disease (A&D) is an open-access online journal dedicated to publishing groundbreaking research on the biology of aging, the pathophysiology of age-related diseases, and innovative therapies for conditions affecting the elderly. The scope encompasses various diseases such as Stroke, Alzheimer's disease, Parkinson’s disease, Epilepsy, Dementia, Depression, Cardiovascular Disease, Cancer, Arthritis, Cataract, Osteoporosis, Diabetes, and Hypertension. The journal welcomes studies involving animal models as well as human tissues or cells.