N/O Co-doped Porous Carbon with Controllable Porosity Synthesized via an All-in-One Step Method for a High-Rate-Performance Supercapacitor.

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Langmuir Pub Date : 2024-09-17 Epub Date: 2024-09-04 DOI:10.1021/acs.langmuir.4c02328
Chenweijia He, Guangjie Yang, Liye Ni, Haoqi Yang, Yongshuo Peng, Xiangdong Liu, Ping Li, Cheng Song, Shuijian He, Qian Zhang
{"title":"N/O Co-doped Porous Carbon with Controllable Porosity Synthesized via an All-in-One Step Method for a High-Rate-Performance Supercapacitor.","authors":"Chenweijia He, Guangjie Yang, Liye Ni, Haoqi Yang, Yongshuo Peng, Xiangdong Liu, Ping Li, Cheng Song, Shuijian He, Qian Zhang","doi":"10.1021/acs.langmuir.4c02328","DOIUrl":null,"url":null,"abstract":"<p><p>A green and economical methodology to fabricate carbon-based materials with suitable pore size distributions is needed to achieve rapid electrolyte diffusion and improve the performance of supercapacitors. Here, a method combining <i>in situ</i> templates with self-activation and self-doping is proposed. By variation of the molar ratio of magnesium folate and potassium folate, the pore size distribution was effectively adjusted. The optimal carbon materials (K<i>x</i>) have a high specific surface area (1021-1676 m<sup>2</sup> g<sup>-1</sup>) and hierarchical pore structure, which significantly promotes its excellent capacitive properties. Notably, K2 shows an excellent mass specific capacitance of 233 F g<sup>-1</sup> at 0.1 A g<sup>-1</sup>. It still retained 113 F g<sup>-1</sup> at 55 A g<sup>-1</sup>. The assembled symmetric supercapacitor exhibited an outstanding cyclic stability. It maintains 100% capacitance after 100 000 cycles at 10 A g<sup>-1</sup>. The symmetric supercapacitor demonstrated a maximum power density of 99.8 kW kg<sup>-1</sup>. This study focuses on the preparation of layered pore structures to provide insights into the sustainable design of carbon materials.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02328","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A green and economical methodology to fabricate carbon-based materials with suitable pore size distributions is needed to achieve rapid electrolyte diffusion and improve the performance of supercapacitors. Here, a method combining in situ templates with self-activation and self-doping is proposed. By variation of the molar ratio of magnesium folate and potassium folate, the pore size distribution was effectively adjusted. The optimal carbon materials (Kx) have a high specific surface area (1021-1676 m2 g-1) and hierarchical pore structure, which significantly promotes its excellent capacitive properties. Notably, K2 shows an excellent mass specific capacitance of 233 F g-1 at 0.1 A g-1. It still retained 113 F g-1 at 55 A g-1. The assembled symmetric supercapacitor exhibited an outstanding cyclic stability. It maintains 100% capacitance after 100 000 cycles at 10 A g-1. The symmetric supercapacitor demonstrated a maximum power density of 99.8 kW kg-1. This study focuses on the preparation of layered pore structures to provide insights into the sustainable design of carbon materials.

Abstract Image

通过一步到位法合成具有可控孔隙率的 N/O Co 掺杂多孔碳,用于制造高能效超级电容器。
要实现电解质的快速扩散并提高超级电容器的性能,需要一种绿色、经济的方法来制造具有合适孔径分布的碳基材料。本文提出了一种将原位模板与自激活和自掺杂相结合的方法。通过改变叶酸镁和叶酸钾的摩尔比,有效地调整了孔径分布。最佳碳材料(Kx)具有高比表面积(1021-1676 m2 g-1)和分层孔隙结构,这极大地促进了其优异的电容特性。值得注意的是,K2 在 0.1 A g-1 时显示出 233 F g-1 的出色质量比电容。在 55 A g-1 时,它仍能保持 113 F g-1。组装好的对称超级电容器具有出色的循环稳定性。在 10 A g-1 条件下循环 100 000 次后,它仍能保持 100% 的电容。对称超级电容器的最大功率密度为 99.8 kW kg-1。这项研究的重点是分层孔隙结构的制备,为碳材料的可持续设计提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信