Jun-Yeong Ahn, Somi Kim, Chang Rok Kim, Ji-Hyun Lee, Jong Min Kim, Thomas M. Klompstra, Yoon Ha Choi, Yoon Jeon, Yongwoo Na, Jong-Seo Kim, Yuki Okada, Ho Lee, Ik Soo Kim, Jong Kyoung Kim, Bon-Kyoung Koo, Sung Hee Baek
{"title":"Dual function of PHF16 in reinstating homeostasis of murine intestinal epithelium after crypt regeneration","authors":"Jun-Yeong Ahn, Somi Kim, Chang Rok Kim, Ji-Hyun Lee, Jong Min Kim, Thomas M. Klompstra, Yoon Ha Choi, Yoon Jeon, Yongwoo Na, Jong-Seo Kim, Yuki Okada, Ho Lee, Ik Soo Kim, Jong Kyoung Kim, Bon-Kyoung Koo, Sung Hee Baek","doi":"10.1016/j.devcel.2024.08.009","DOIUrl":null,"url":null,"abstract":"<p>Intestinal stem cells (ISCs) are highly vulnerable to damage, being in a constant state of proliferation. Reserve stem cells repair the intestinal epithelium following damage-induced ablation of ISCs. Here, we report that the epigenetic regulator plant homology domain (PHD) finger protein 16 (PHF16) restores homeostasis of the intestinal epithelium after initial damage-induced repair. In <em>Phf16</em><sup><em>−/Y</em></sup> mice, revival stem cells (revSCs) showed defects in exiting the regenerative state, and intestinal crypt regeneration failed even though revSCs were still induced in response to tissue damage, as observed by single-cell RNA sequencing (scRNA-seq). Analysis of <em>Phf16</em><sup><em>−/Y</em></sup> intestinal organoids by RNA sequencing (RNA-seq) and ATAC sequencing identified that PHF16 restores homeostasis of the intestinal epithelium by inducing retinoic acid receptor (RAR)/retinoic X receptor (RXR) target genes through HBO1-mediated histone H3K14 acetylation, while at the same time counteracting YAP/TAZ activity by ubiquitination of CDC73. Together, our findings demonstrate the importance of timely suppression of regenerative activity by PHF16 for the restoration of gut homeostasis after acute tissue injury.</p>","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"8 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.08.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intestinal stem cells (ISCs) are highly vulnerable to damage, being in a constant state of proliferation. Reserve stem cells repair the intestinal epithelium following damage-induced ablation of ISCs. Here, we report that the epigenetic regulator plant homology domain (PHD) finger protein 16 (PHF16) restores homeostasis of the intestinal epithelium after initial damage-induced repair. In Phf16−/Y mice, revival stem cells (revSCs) showed defects in exiting the regenerative state, and intestinal crypt regeneration failed even though revSCs were still induced in response to tissue damage, as observed by single-cell RNA sequencing (scRNA-seq). Analysis of Phf16−/Y intestinal organoids by RNA sequencing (RNA-seq) and ATAC sequencing identified that PHF16 restores homeostasis of the intestinal epithelium by inducing retinoic acid receptor (RAR)/retinoic X receptor (RXR) target genes through HBO1-mediated histone H3K14 acetylation, while at the same time counteracting YAP/TAZ activity by ubiquitination of CDC73. Together, our findings demonstrate the importance of timely suppression of regenerative activity by PHF16 for the restoration of gut homeostasis after acute tissue injury.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.