Exploring multigene families of odorant binding proteins and cytochrome P450 monooxygenases in the stink bug pest complex through comparative transcriptomics
Andrea Belén Dulbecco, Débora Elizabeth Moriconi, Fernanda Cingolani, Eliana Nieves, Luis Diambra, Nicolás Pedrini
{"title":"Exploring multigene families of odorant binding proteins and cytochrome P450 monooxygenases in the stink bug pest complex through comparative transcriptomics","authors":"Andrea Belén Dulbecco, Débora Elizabeth Moriconi, Fernanda Cingolani, Eliana Nieves, Luis Diambra, Nicolás Pedrini","doi":"10.1007/s10340-024-01831-9","DOIUrl":null,"url":null,"abstract":"<p>The stink bugs <i>Edessa meditabunda</i>, <i>Piezodorus guildinii</i>, and <i>Diceraeus furcatus</i> (Hemiptera: Pentatomidae) are major pests in the Argentinean core area of soybean production. A detailed molecular genetics comprehension of how these insects perceive odorants and respond to semiochemicals and how they detoxify chemical pesticides and plant compounds are essential to improve their management strategies. We first assembled and compared the transcriptomes from <i>E. meditabunda</i>, <i>P. guildinii</i>, and <i>D. furcatus</i>. Regarding sequence similarity, <i>P. guildinii</i> and <i>D. furcatus</i> are closer to each other than <i>E. meditabunda.</i> Then, we characterized the multigene families of odorant binding proteins (OBPs) and cytochrome P450 monooxygenases (CYP). A total of 29, 38, and 39 unigenes encoding for OBP were obtained in <i>E. meditabunda</i>, <i>P. guildinii</i>, and <i>D. furcatus</i>, respectively, divided into classical OBPs and plus-C OBPs. A total of 72, 63, and 76 unigenes encoding for CYP were found in <i>E. meditabunda</i>, <i>P. guildinii</i>, and <i>D. furcatus</i>, respectively, which were further classified into 24 families and 47 subfamilies. On the other hand, we performed for the first time RNA interference in vivo by dsRNA injection in <i>E. meditabunda</i>, suggesting that this molecular tool can be exploited in future physiological and functional studies in this species.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-024-01831-9","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The stink bugs Edessa meditabunda, Piezodorus guildinii, and Diceraeus furcatus (Hemiptera: Pentatomidae) are major pests in the Argentinean core area of soybean production. A detailed molecular genetics comprehension of how these insects perceive odorants and respond to semiochemicals and how they detoxify chemical pesticides and plant compounds are essential to improve their management strategies. We first assembled and compared the transcriptomes from E. meditabunda, P. guildinii, and D. furcatus. Regarding sequence similarity, P. guildinii and D. furcatus are closer to each other than E. meditabunda. Then, we characterized the multigene families of odorant binding proteins (OBPs) and cytochrome P450 monooxygenases (CYP). A total of 29, 38, and 39 unigenes encoding for OBP were obtained in E. meditabunda, P. guildinii, and D. furcatus, respectively, divided into classical OBPs and plus-C OBPs. A total of 72, 63, and 76 unigenes encoding for CYP were found in E. meditabunda, P. guildinii, and D. furcatus, respectively, which were further classified into 24 families and 47 subfamilies. On the other hand, we performed for the first time RNA interference in vivo by dsRNA injection in E. meditabunda, suggesting that this molecular tool can be exploited in future physiological and functional studies in this species.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.