Hierarchical Ceramic Nanofibrous Aerogels for Universal Passive Radiative Cooling

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Pin-Hui Lan, Ching-Wen Hwang, Tai-Chi Chen, Tzu-Wei Wang, Hsuen-Li Chen, Dehui Wan
{"title":"Hierarchical Ceramic Nanofibrous Aerogels for Universal Passive Radiative Cooling","authors":"Pin-Hui Lan,&nbsp;Ching-Wen Hwang,&nbsp;Tai-Chi Chen,&nbsp;Tzu-Wei Wang,&nbsp;Hsuen-Li Chen,&nbsp;Dehui Wan","doi":"10.1002/adfm.202410285","DOIUrl":null,"url":null,"abstract":"<p>Solar-induced thermal challenges in buildings, cold chain logistics, and spacecrafts may be overcome by integrating passive radiative cooling (PRC) with aerogels having thermal insulation (TI). Herein, a universal radiative cooling silica aerogel (UCSA) is prepared through the simple regeneration and freeze-drying of commercial quartz fiber membranes. The optically engineered UCSA with a hybrid structure (silica nanofibers/microbeads) achieves remarkable solar reflectance (<i>R<sub>S.E.</sub></i> = 98.1%) and atmospheric transparency window emittance (<i>ε<sub>ATW</sub></i> = 92.1%) under Earth conditions, with a theoretical daytime cooling power of 103.3 W m<sup>−2</sup>. In the harsh space environment, it exhibits ultrahigh average solar reflectance (<i>R<sub>S.E.</sub></i> = 99.1%) and broadband mid-infrared emittance (<i>ε<sub>MIR</sub></i> = 90%), achieving a cooling power of 354.1 W m<sup>−2</sup>. Compared to single-functional approaches, UCSA synergistically integrates the PRC and TI performance for excellent thermal management capability. Moreover, this ceramic aerogel can resist temperatures up to 830 °C, safeguarding building occupants and spacecraft electronics. Furthermore, UCSA passes environmental aging and thermal vacuum outgassing tests for long-term viability both on Earth and in space. Finally, a USCA-covered box achieves an average sub-ambient cooling of 18.6 °C when exposed to sunlight. In summary, UCSA opens a path for energy-efficient and sustainable cooling strategy with universal applications.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 52","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202410285","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solar-induced thermal challenges in buildings, cold chain logistics, and spacecrafts may be overcome by integrating passive radiative cooling (PRC) with aerogels having thermal insulation (TI). Herein, a universal radiative cooling silica aerogel (UCSA) is prepared through the simple regeneration and freeze-drying of commercial quartz fiber membranes. The optically engineered UCSA with a hybrid structure (silica nanofibers/microbeads) achieves remarkable solar reflectance (RS.E. = 98.1%) and atmospheric transparency window emittance (εATW = 92.1%) under Earth conditions, with a theoretical daytime cooling power of 103.3 W m−2. In the harsh space environment, it exhibits ultrahigh average solar reflectance (RS.E. = 99.1%) and broadband mid-infrared emittance (εMIR = 90%), achieving a cooling power of 354.1 W m−2. Compared to single-functional approaches, UCSA synergistically integrates the PRC and TI performance for excellent thermal management capability. Moreover, this ceramic aerogel can resist temperatures up to 830 °C, safeguarding building occupants and spacecraft electronics. Furthermore, UCSA passes environmental aging and thermal vacuum outgassing tests for long-term viability both on Earth and in space. Finally, a USCA-covered box achieves an average sub-ambient cooling of 18.6 °C when exposed to sunlight. In summary, UCSA opens a path for energy-efficient and sustainable cooling strategy with universal applications.

Abstract Image

用于通用被动辐射冷却的分层纳米纤维陶瓷气凝胶
通过将被动辐射冷却(PRC)与具有隔热性能(TI)的气凝胶相结合,可以克服建筑物、冷链物流和航天器中太阳引起的热挑战。本文通过对商用石英纤维膜进行简单的再生和冷冻干燥,制备了一种通用辐射冷却二氧化硅气凝胶(UCSA)。这种具有混合结构(纳米二氧化硅纤维/微珠)的光学工程 UCSA 在地球条件下具有出色的太阳反射率(RS.E. = 98.1%)和大气透明窗发射率(εATW = 92.1%),理论日间制冷功率为 103.3 W m-2。在恶劣的太空环境中,它表现出超高的平均太阳反射率(RS.E. = 99.1%)和宽带中红外发射率(εMIR = 90%),冷却功率达到 354.1 W m-2。与单一功能的方法相比,UCSA 协同整合了 PRC 和 TI 性能,具有出色的热管理能力。此外,这种陶瓷气凝胶还能抵御高达 830 ℃ 的高温,从而保护建筑物内的人员和航天器电子设备的安全。此外,UCSA 还通过了环境老化和热真空脱气测试,可在地球和太空长期使用。最后,当暴露在阳光下时,有 USCA 覆盖的箱体可实现平均 18.6 °C的亚环境制冷。总之,UCSA 为普遍应用的节能和可持续冷却战略开辟了一条道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信