Structural basis for antibody-mediated NMDA receptor clustering and endocytosis in autoimmune encephalitis

IF 12.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Han Wang, Chun Xie, Bo Deng, Jinjun Ding, Na Li, Zengwei Kou, Mengmeng Jin, Jie He, Qinrui Wang, Han Wen, Jinbao Zhang, Qinming Zhou, Sheng Chen, Xiangjun Chen, Ti-Fei Yuan, Shujia Zhu
{"title":"Structural basis for antibody-mediated NMDA receptor clustering and endocytosis in autoimmune encephalitis","authors":"Han Wang, Chun Xie, Bo Deng, Jinjun Ding, Na Li, Zengwei Kou, Mengmeng Jin, Jie He, Qinrui Wang, Han Wen, Jinbao Zhang, Qinming Zhou, Sheng Chen, Xiangjun Chen, Ti-Fei Yuan, Shujia Zhu","doi":"10.1038/s41594-024-01387-3","DOIUrl":null,"url":null,"abstract":"Antibodies against N-methyl-d-aspartate receptors (NMDARs) are most frequently detected in persons with autoimmune encephalitis (AE) and used as diagnostic biomarkers. Elucidating the structural basis of monoclonal antibody (mAb) binding to NMDARs would facilitate the development of targeted therapy for AE. Here, we reconstructed nanodiscs containing green fluorescent protein-fused NMDARs to label and sort individual immune B cells from persons with AE and further cloned and identified mAbs against NMDARs. This allowed cryo-electron microscopy analysis of NMDAR–Fab complexes, revealing that autoantibodies bind to the R1 lobe of the N-terminal domain of the GluN1 subunit. Small-angle X-ray scattering studies demonstrated NMDAR–mAb stoichiometry of 2:1 or 1:2, structurally suitable for mAb-induced clustering and endocytosis of NMDARs. Importantly, these mAbs reduced the surface NMDARs and NMDAR-mediated currents, without tonically affecting NMDAR channel gating. These structural and functional findings imply that the design of neutralizing antibody binding to the R1 lobe of NMDARs represents a potential therapy for AE treatment. The authors cloned anti-NMDAR (N-methyl-d-aspartate receptor) monoclonal antibodies from the immune B cells of persons with autoimmune encephalitis and revealed their precise binding epitopes on NMDARs and the pathological mechanism underlying the downregulation of synaptic function.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 12","pages":"1987-1996"},"PeriodicalIF":12.5000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01387-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01387-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antibodies against N-methyl-d-aspartate receptors (NMDARs) are most frequently detected in persons with autoimmune encephalitis (AE) and used as diagnostic biomarkers. Elucidating the structural basis of monoclonal antibody (mAb) binding to NMDARs would facilitate the development of targeted therapy for AE. Here, we reconstructed nanodiscs containing green fluorescent protein-fused NMDARs to label and sort individual immune B cells from persons with AE and further cloned and identified mAbs against NMDARs. This allowed cryo-electron microscopy analysis of NMDAR–Fab complexes, revealing that autoantibodies bind to the R1 lobe of the N-terminal domain of the GluN1 subunit. Small-angle X-ray scattering studies demonstrated NMDAR–mAb stoichiometry of 2:1 or 1:2, structurally suitable for mAb-induced clustering and endocytosis of NMDARs. Importantly, these mAbs reduced the surface NMDARs and NMDAR-mediated currents, without tonically affecting NMDAR channel gating. These structural and functional findings imply that the design of neutralizing antibody binding to the R1 lobe of NMDARs represents a potential therapy for AE treatment. The authors cloned anti-NMDAR (N-methyl-d-aspartate receptor) monoclonal antibodies from the immune B cells of persons with autoimmune encephalitis and revealed their precise binding epitopes on NMDARs and the pathological mechanism underlying the downregulation of synaptic function.

Abstract Image

Abstract Image

自身免疫性脑炎中抗体介导的 NMDA 受体聚集和内吞的结构基础
N-甲基-d-天冬氨酸受体(NMDAR)抗体最常在自身免疫性脑炎(AE)患者体内检测到,并被用作诊断生物标志物。阐明单克隆抗体(mAb)与 NMDARs 结合的结构基础将有助于开发治疗自身免疫性脑炎的靶向疗法。在这里,我们重建了含有绿色荧光蛋白融合 NMDARs 的纳米圆盘,以标记和分拣来自 AE 患者的单个免疫 B 细胞,并进一步克隆和鉴定了针对 NMDARs 的 mAb。这样就可以对 NMDAR-Fab 复合物进行冷冻电镜分析,发现自身抗体与 GluN1 亚基 N 端结构域的 R1 叶结合。小角 X 射线散射研究表明,NMDAR-mAb 的配比为 2:1 或 1:2,在结构上适合 mAb 诱导的 NMDAR 聚集和内吞。重要的是,这些 mAb 减少了表面 NMDARs 和 NMDAR 介导的电流,而不会影响 NMDAR 通道门控。这些结构和功能研究结果表明,设计与 NMDARs R1 叶结合的中和抗体是一种潜在的 AE 治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Structural & Molecular Biology
Nature Structural & Molecular Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOPHYSICS
CiteScore
22.00
自引率
1.80%
发文量
160
审稿时长
3-8 weeks
期刊介绍: Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信